Karl G. Jansky VLA Tutorials: Difference between revisions

From CASA Guides
Jump to navigationJump to search
Jott (talk | contribs)
Tseelig (talk | contribs)
No edit summary
 
(342 intermediate revisions by 23 users not shown)
Line 1: Line 1:
Disclaimer: These tutorials provide guidelines to help users become familiar with VLA data reduction in [https://casa.nrao.edu/ CASA].  They offer examples for common general-use cases such as spectral line, continuum, linear polarization, and mosaicking.  However, the results demonstrated here are specific to the given data sets. The VLA is an extremely flexible instrument, and the techniques presented here may not apply equally to every individual VLA data set, especially if the type of observations, quality of data, or imaging analysis are particularly different or complicated. More details about CASA and its tasks and tools are available in the [https://casa.nrao.edu/casadocs Online CASA Documentation]. Further assistance with VLA data reduction is available through the [https://help.nrao.edu/ NRAO HelpDesk].
''In addition to the current VLA CASA Guides below, we also provide links to [https://casaguides.nrao.edu/index.php/Karl_G._Jansky_VLA_Tutorials-archived older versions of the VLA CASA guides].''
<!--
-->
== Introduction ==
== Introduction ==


The Jansky VLA Tutorials are meant to guide the observer through some common types of data analysis, using example datasets, and including explanations of the individual steps. These analyses will be broadly applicable to many EVLA datasets.  
The Karl G. Jansky Very Large Array (VLA) Tutorials are meant to guide the observer through some common types of data analysis, using example datasets, and including explanations of the individual steps. These analyses will be broadly applicable to many VLA data sets.  




If you are new to Jansky VLA Data, you may start with <h3>[[EVLA: Getting Started | Getting Started with Jansky VLA data]]</h3>
If you are new to CASA, you may start with <h3>[https://casaguides.nrao.edu/index.php?title=Getting_Started_in_CASA Getting Started in CASA]</h3>


<!--
If you are new to VLA Data, you may start with <h3>[[VLA: Getting Started | Getting Started with VLA data]]</h3>
-->
== VLA Data Reduction Tutorials ==




== Jansky VLA Tutorials ==


* '''Carbon Star IRC+10216: high frequency (36GHz), spectral line data reduction''' (CASA 4.3)
=== High frequency (36GHz), spectral line data reduction: Carbon Star IRC+10216 ===
<blockquote>
<blockquote>
* [http://casaguides.nrao.edu/index.php?title=EVLA_high_frequency_Spectral_Line_tutorial_-_IRC%2B10216 IRC+10216 Tutorial]  
* [https://casaguides.nrao.edu/index.php?title=VLA_high_frequency_Spectral_Line_tutorial_-_IRC%2B10216-CASA6.2.0 IRC+10216 Tutorial] (CASA 6.2.0) 
 
* This tutorial requires to download a dataset <font color=green>1.1GB</font> in size
* This tutorial requires to download a dataset <font color=green>1.1GB</font> in size
</blockquote>


<blockquote>
Calibrate and make image cubes of the line emission from this asymptotic giant branch star. This is a high-frequency VLA dataset.  Includes:
Calibrate and make image cubes of the line emission from this asymptotic giant branch star. This is a high-frequency Jansky VLA dataset.  Includes:
* Inspecting data; basic flagging & calibration
* Inspecting data; basic flagging & calibration
* Subtracting continuum emission  
* Subtracting continuum emission  
Line 26: Line 38:
</blockquote>
</blockquote>


=== 6cm Continuum Imaging, Mosaicking: Supernova Remnant 3C391 ===
<blockquote>
* [http://casaguides.nrao.edu/index.php?title=VLA_Continuum_Tutorial_3C391 3C391 Tutorial] (CASA 6.4.1)


* '''Supernova Remnant 3C391: 6cm Polarimetry and Continuum Imaging, Mosaicking''' (CASA 4.3)
<blockquote>
* [http://casaguides.nrao.edu/index.php?title=EVLA_Continuum_Tutorial_3C391 3C391 Tutorial Part 1: calibration, imaging] 
* [http://casaguides.nrao.edu/index.php?title=EVLA_Advanced_Topics_3C391 3C391 Tutorial Part 2: Image Analysis, Polarization, Self-calibration]
* This tutorial requires to download a dataset <font color=orange>3.1GB</font> in size
* This tutorial requires to download a dataset <font color=orange>3.1GB</font> in size
</blockquote>


<blockquote>
Calibrate VLA continuum data, image a mosaic of the region in Stokes I.  Includes:
Calibrate Jansky VLA full polarization data, image a mosaic of the region in full Stokes and create a spectral index map.  Includes:
* Inspecting data; basic flagging  
* Inspecting data; basic flagging  
* Calibration
* Calibration
* Image Analysis and Manipulation
* Image Analysis
* Polarization Imaging
* Spectral Index imaging
* Self-calibration  
* Self-calibration  
</blockquote>
</blockquote>


== Jansky VLA Tutorials for more Advanced Users ==
=== Polarization Calibration based on CASA pipeline standard reduction: The radio galaxy 3C75 ===
<blockquote>
* [https://casaguides.nrao.edu/index.php/Polarization_Calibration_based_on_CASA_pipeline_standard_reduction:_The_radio_galaxy_3C75 Polarization Calibration based on CASA pipeline (3C75)] (CASA 6.5.4)
 
* This tutorial requires to download a dataset <font color=red>10GB</font> in size
 
This tutorial demonstrates continuum calibration with the standard VLA pipeline and focuses on linear polarization calibration based on pipeline products, as well as full Stokes wide-field imaging and analysis. It includes:
* Instructions on how to execute the VLA pipeline
* How to modify pipeline products for polarization calibration
* Linear Polarization Calibration
* Wide-field Polarization Imaging
* Self-calibration
* Analysis of Polarization Products
</blockquote>
 
=== P-band continuum imaging data reduction tutorial: 3C129  ===
<blockquote>
* [https://casaguides.nrao.edu/index.php/VLA_Radio_galaxy_3C_129:_P-band_continuum_tutorial 3C129 P-band Tutorial] (CASA 6.4.1)
 
* This tutorial requires to download a dataset <font color=red>26GB</font> in size
 
This low frequency VLA tutorial for the observation of radio galaxy 3C 129 focuses on low frequency wide-fractional-bandwidth data in the sub GHz regime and demonstrates multi-frequency synthesis imaging with w-projection.  This includes:
* Basic flagging and evaluation
* Automatic RFI Excision
* Ionospheric Calibration
* Self - Calibration
* Widefield imaging
</blockquote>
 
=== MG0414+0534 P-band Spectral Line Tutorial ===
<blockquote>
* [https://casaguides.nrao.edu/index.php?title=MG0414%2B0534_P-band_Spectral_Line_Tutorial MG0414+0534 P-band Spectral Line Tutorial (CASA 6.5.4)]
 
* This tutorial is based on an archival data-set of 142 GB in size, but we will extract only a <font color=red>33GB</font> portion of this data-set to work on.
 
This VLA P-band tutorial is aimed at calibrating and making an image cube of line-emission centered on 390.6 MHz. It includes:
* P-band spectral-line observing strategies
* Basic flagging options
* Low-frequency calibration and self-calibration
* Spectral-line imaging
</blockquote>
 
=== HI 21 cm Spectral Line Data Reduction Tutorial ===
<blockquote>
* [https://casaguides.nrao.edu/index.php/HI_21cm_(1.4_GHz)_spectral_line_data_reduction:_LEDA_44055-CASA6.5.2 HI 21cm Spectral Line (CASA 6.5.2)]
 
* This tutorial is based on an archival data-set of <font color=red>85 GB</font> in size.
 
This HI 21cm spectral line tutorial is aimed at calibrating and making an image cube of the dwarf galaxy LEDA4 4055. It includes:
* Finding the HI 21 cm spectral line in LEDA 44055
* Basic flagging
* Splitting out the HI Line
* Spectral-line imaging
* Continuum Subtraction
 
</blockquote>
 
== VLA Topical Guides ==
 
 
=== Flagging VLA Data in CASA === 
 
<blockquote>
* [http://casaguides.nrao.edu/index.php/VLA_CASA_Flagging Topical Guide: Flagging VLA Data] (CASA 6.5.4)
 
* This tutorial requires to download a dataset <font color=orange>4.9GB</font> in size
 
This tutorial describes different flagging techniques, including:
 
* Identifying Problematic Antennas from the Operator Logs
* Online Flags
* Shadowing, zeroes, quacking, flagmanager, Hanning smoothing
* Automatic RFI excision (TFCrop, RFlag)
* Interactive Flagging (plotms, msview)
* Flagging Summary & Report
</blockquote>
 
=== Imaging VLA Data in CASA ===
 
<blockquote>
* [http://casaguides.nrao.edu/index.php/VLA_CASA_Imaging Topical Guide: Imaging VLA Data] (CASA 6.5.4)
 
* This tutorial requires to download a dataset <font color=green>1.2GB</font> in size
 
The Imaging topical guide shows annotated examples of different imaging techniques that are applicable to different science applications. This tutorial includes:
 
* An Introduction to the CLEAN algorithm, data and imaging weights, primary and synthesized beams
* Clean Output Images
* Dirty Image, Regular CLEAN & RMS Noise, CLEAN with different Weights
* Multi-Scale CLEAN
* Multi-Scale, Wide-Field CLEAN (w-projection)
* Multi-Scale, Multi-Term Frequency Synthesis
* Multi-Scale, Multi-Term Frequency, Widefield CLEAN
* Imaging Outlier Fields
* Primary Beam Correction
* Imaging Spectral Cubes, Beam per Plane
* Image Header, Image Conversion
</blockquote>
 
=== Self-calibration of VLA Data ===
 
<blockquote>
* [https://casaguides.nrao.edu/index.php/VLA_Self-calibration_Tutorial Topical Guide: VLA Self-calibration Tutorial] (CASA 6.4.1)
* This tutorial requires to download a dataset <font color=red>19GB</font> in size
 
This tutorial demonstrates how to perform self-calibration on a VLA data set, covering aspects such as how to choose the time interval, signal-to-noise ratio, and combination over spectral windows and polarizations.
</blockquote>
 
=== VLA Multi-Configuration Data Combination ===
 
<blockquote>
* [http://casaguides.nrao.edu/index.php/VLA_Data_Combination Topical Guide: VLA Data Combination Guide] (CASA 6.5.4)
* This tutorial requires to download a dataset <font color=green>3.0GB</font> in size
 
The VLA Data Combination Tutorial provides guidance on the combination of multi-configuration VLA data sets (in this case VLA A, B, C and D configurations). The data are re-weighted in two different ways, combined, and imaged.
</blockquote>
 
=== Source Subtraction in VLA data ===
 
<blockquote>
* [[VLA_Source_Subtraction_Topical_Guide | Topical Guide: Source Subtraction in VLA data]] (CASA 6.4.1)
* This tutorial requires to download a dataset <font color=green>1.4GB</font> in size
 
This topical guide demonstrates how to remove a time variable source from the visibility data.
</blockquote>
 
=== Correcting for a Spectral Index in Bandpass Calibration ===
 
<blockquote>
* [http://casaguides.nrao.edu/index.php/VLA_CASA_Bandpass_Slope Topical Guide: Correcting for a Spectral Index in Bandpass Calibration] (CASA 6.5.4)
* This tutorial requires to download a dataset <font color=orange>3.4GB</font> in size
 
This tutorial explains how to obtain a bandpass solution when the bandpass calibrator is a source with an unknown spectral index. This is typically encountered at high frequency observations, where the standard VLA flux density calibrators are too weak for high signal-to-noise bandpass solutions.
</blockquote>
 
 
<!--
==  VLA Tutorials for more Advanced Users ==


* '''Supernova SN2010FZ: Wide-band, narrow-field imaging; C-band (5-7 GHz)'''  (CASA 4.3)
* '''Supernova SN2010FZ: Wide-band, narrow-field imaging; C-band (5-7 GHz)'''  (CASA 4.4)
<blockquote>
<blockquote>
* [http://casaguides.nrao.edu/index.php?title=EVLA_6cmWideband_Tutorial_SN2010FZ Supernova SN2010FZ Tutorial]  
* [http://casaguides.nrao.edu/index.php?title=EVLA_6cmWideband_Tutorial_SN2010FZ Supernova SN2010FZ Tutorial ]
 
* This tutorial requires to download a dataset <font color=orange>2.9GB</font> in size
* This tutorial requires to download a dataset <font color=orange>2.9GB</font> in size
</blockquote>
</blockquote>


<blockquote>
<blockquote>
Calibrate and image a galaxy field for this mid-frequency Jansky VLA observation.  This includes:
Calibrate and image a galaxy field for this mid-frequency VLA observation.  This includes:
* Excising RFI from the data
* Excising RFI from the data
* Basic flagging and calibration steps
* Basic flagging and calibration steps
Line 61: Line 206:
</blockquote>
</blockquote>


* '''Protostar G192.16-3.84: Wide-band, narrow-field imaging using 3-bit sampled data; Ka-band (27-38 GHz)''' (CASA 4.3)
* '''Protostar G192.16-3.84: Wide-band, narrow-field imaging using 3-bit sampled data; Ka-band (27-38 GHz)''' (CASA 4.4)
<blockquote>
<blockquote>
* [http://casaguides.nrao.edu/index.php?title=EVLA_3-bit_Tutorial_G192 Protostar G192.16-3.84 Tutorial]
* [http://casaguides.nrao.edu/index.php?title=EVLA_3-bit_Tutorial_G192 Protostar G192.16-3.84 Tutorial]
* This tutorial requires the download of an <font color=red>18GB</font> dataset
* This tutorial requires the download of an <font color=red>18GB</font> dataset
</blockquote>
</blockquote>
Line 77: Line 223:
</blockquote>
</blockquote>


* '''Supernova G55.7_3.4: Wide-band, wide-field imaging; L-band (1-2 GHz)''' (CASA 4.3)
* '''Supernova G55.7_3.4: Wide-band, wide-field imaging; L-band (1-2 GHz)''' (CASA 4.4)
<blockquote>
<blockquote>
* [http://casaguides.nrao.edu/index.php?title=EVLA_Wide-Band_Wide-Field_Imaging:_G55.7_3.4 G55.7+3.4 Tutorial]
* [http://casaguides.nrao.edu/index.php?title=EVLA_Wide-Band_Wide-Field_Imaging:_G55.7_3.4 G55.7+3.4 Tutorial]
* This tutorial requires to download a dataset <font color=red>14GB</font> in size
* This tutorial requires to download a dataset <font color=red>14GB</font> in size
</blockquote>
</blockquote>


<blockquote>
<blockquote>
This low-frequency Jansky VLA tutorial for the observation of a supernova remnant focuses on RFI excision as well as imaging wide-field and wide-fractional-bandwidth data.  This includes:
This low-frequency VLA tutorial for the observation of a supernova remnant focuses on RFI excision as well as imaging wide-field and wide-fractional-bandwidth data.  This includes:
* Basic flagging and evaluation
* Basic flagging and evaluation
* Different methods for automatic RFI excision
* Different methods for automatic RFI excision
Line 91: Line 238:
</blockquote>
</blockquote>


<!--
== Specific Topics ==
== Specific Topics ==


<!--
 
* [http://casaguides.nrao.edu/index.php?title=WorkshopSelfcal_(Caltech) Self-calibration]
* [http://casaguides.nrao.edu/index.php?title=WorkshopSelfcal_(Caltech) Self-calibration]
-->
 


* CASA: [http://casaguides.nrao.edu/index.php?title=Writing_a_CASA_Task Writing a CASA task]
* CASA: [http://casaguides.nrao.edu/index.php?title=Writing_a_CASA_Task Writing a CASA task]
Line 114: Line 263:


* [[Obtaining EVLA Data: 3C 391 Example]]
* [[Obtaining EVLA Data: 3C 391 Example]]


== Other ==
== Other ==
* Data Calibration, Imaging, and Analysis - simplified for Community Day Events: [[EVLA high frequency Spectral Line Tutorial - CDE]]
* Data Calibration, Imaging, and Analysis - simplified for Community Day Events: [[EVLA high frequency Spectral Line Tutorial - CDE]]
-->


== VLA CASA Simulation Guide ==


== CASA 4.2 versions ==
<blockquote>
* [[EVLA high frequency Spectral Line tutorial - IRC+10216 - CASA 4.2]]
* [https://casaguides.nrao.edu/index.php?title=Protoplanetary_Disk_Simulation_-_VLA-CASA6.5.4 VLA Protoplanetary Disk Simulation Guide] (CASA 6.5.4)
* This tutorial does not require any download.  


* [http://casaguides.nrao.edu/index.php?title=EVLA_Continuum_Tutorial_3C391_-_CASA_4.2 3C391 Tutorial Part 1: calibration, imaging]   
The VLA Protoplanetary Disk Simulation Guide shows examples on how to simulate VLA data based on model images. The tutorial will explain the main simulation tools, apply different parameters to simulations, and compares the results to the VLA exposure calculator.  
* [http://casaguides.nrao.edu/index.php?title=Advanced_Topics_3C391_-_CASA4.2 3C391 Tutorial Part 2: Image Analysis, Polarization, Self-calibration]
</blockquote>


* [http://casaguides.nrao.edu/index.php?title=EVLA_6cmWideband_Tutorial_SN2010FZ_-_CASA_4.2 Supernova SN2010FZ: Wide-band, narrow-field imaging; C-band (5-7 GHz)]
== VLA CASA Pipeline Guide ==


* [[EVLA 3-bit Tutorial G192 - CASA4.2 | Protostar G192.16-3.84: Wide-band, narrow-field imaging using 3-bit sampled data; Ka-band (27-38 GHz)]]
<blockquote>
* [http://casaguides.nrao.edu/index.php/VLA_CASA_Pipeline VLA CASA Pipeline Guide] (CASA 6.5.4)
* This tutorial does not require any download.
* The guide contains a link to [https://casaguides.nrao.edu/index.php?title=Pipeline:_Frequent_VLA_problems Frequent VLA problems] and how to address them within a pipeline run.


* [[EVLA Wide-Band Wide-Field Imaging: G55.7 - CASA4.2 | Supernova G55.7_3.4: Wide-band, wide-field imaging; L-band (1-2 GHz)]]
The VLA CASA Pipeline Guide provides an example of a  VLA CASA pipeline run. Whereas the [https://science.nrao.edu/facilities/vla/data-processing/pipeline VLA Pipeline Web Page] describes the pipeline structure, requirements, execution options including restoration, pipeline output products, and pipeline modifications, this CASA guide is a detailed walkthrough of the weblog and provides interpretations of pipeline plots, tables, and Quality Assurance (QA) metrics.
</blockquote>


 
== Pre-EVLA Data Reduction Guides ==
== CASA 4.1 versions ==
<blockquote>
* [[EVLA high frequency Spectral Line tutorial - IRC+10216 - CASA 4.1]]
''For data reduction of pre-EVLA upgrade VLA data, we provide separate, [https://casaguides.nrao.edu/index.php/Pre-upgrade_VLA_Tutorials pre-upgrade VLA data reduction tutorials]''
 
</blockquote>
* [http://casaguides.nrao.edu/index.php?title=EVLA_Continuum_Tutorial_3C391_-_CASA_4.1 3C391 Tutorial Part 1: calibration, imaging]   
* [http://casaguides.nrao.edu/index.php?title=Advanced_Topics_3C391_-_CASA4.1 3C391 Tutorial Part 2: Image Analysis, Polarization, Self-calibration]
 
* [http://casaguides.nrao.edu/index.php?title=EVLA_6cmWideband_Tutorial_SN2010FZ_-_CASA_4.1 Supernova SN2010FZ: Wide-band, narrow-field imaging; C-band (5-7 GHz)]
 
* [[EVLA 3-bit Tutorial G192 - CASA4.1 | Protostar G192.16-3.84: Wide-band, narrow-field imaging using 3-bit sampled data; Ka-band (27-38 GHz)]]
 
* [[EVLA Wide-Band Wide-Field Imaging: G55.7 - CASA4.1 | Supernova G55.7_3.4: Wide-band, wide-field imaging; L-band (1-2 GHz)]]
 
 
== CASA 3.4 versions ==
 
* [http://casaguides.nrao.edu/index.php?title=EVLA_high_frequency_Spectral_Line_tutorial_-_IRC%2B10216-CASA3.4 IRC+10216 Tutorial] 
 
 
* [http://casaguides.nrao.edu/index.php?title=EVLA_Continuum_Tutorial_3C391-CASA3.4 3C391 Tutorial Part 1: calibration, imaging] 
* [http://casaguides.nrao.edu/index.php?title=EVLA_Advanced_Topics_3C391-CASA3.4 3C391 Tutorial Part 2: Image Analysis, Polarization, Self-calibration]
 
 
* [http://casaguides.nrao.edu/index.php?title=EVLA_6cmWideband_Tutorial_SN2010FZ-CASA3.4 SN2010FZ Tutorial]
 
 
* [http://casaguides.nrao.edu/index.php?title=EVLA_Wide-Band_Wide-Field_Imaging:_G55.7_3.4-CASA3.4 G55.7+3.4 Tutorial]
 
 
 
== CASA 3.3 versions ==
 
* [http://casaguides.nrao.edu/index.php?title=EVLA_high_frequency_Spectral_Line_tutorial_-_IRC%2B10216_part1-CASA3.3 IRC+10216 Part 1: editing, calibration] 
* [http://casaguides.nrao.edu/index.php?title=EVLA_high_frequency_Spectral_Line_tutorial_-_IRC%2B10216_part2-CASA3.3  IRC+10216 Part 2: continuum subtraction, imaging, selfcal] 
 
 
* [http://casaguides.nrao.edu/index.php?title=EVLA_Continuum_Tutorial_3C391-CASA3.3 3C391 Tutorial Part 1: calibration, imaging] 
* [http://casaguides.nrao.edu/index.php?title=EVLA_Advanced_Topics_3C391-CASA3.3 3C391 Tutorial Part 2: Image Analysis, Polarization, Self-calibration]  
 
 
* [http://casaguides.nrao.edu/index.php?title=EVLA_6cmWideband_Tutorial_SN2010FZ-CASA3.3 SN2010FZ Tutorial]
 
 
* [http://casaguides.nrao.edu/index.php?title=EVLA_Wide-Band_Wide-Field_Imaging:_G55.7_3.4-CASA3.3 G55.7+3.4 Tutorial]

Latest revision as of 21:24, 25 March 2024

Disclaimer: These tutorials provide guidelines to help users become familiar with VLA data reduction in CASA. They offer examples for common general-use cases such as spectral line, continuum, linear polarization, and mosaicking. However, the results demonstrated here are specific to the given data sets. The VLA is an extremely flexible instrument, and the techniques presented here may not apply equally to every individual VLA data set, especially if the type of observations, quality of data, or imaging analysis are particularly different or complicated. More details about CASA and its tasks and tools are available in the Online CASA Documentation. Further assistance with VLA data reduction is available through the NRAO HelpDesk.

In addition to the current VLA CASA Guides below, we also provide links to older versions of the VLA CASA guides.


Introduction

The Karl G. Jansky Very Large Array (VLA) Tutorials are meant to guide the observer through some common types of data analysis, using example datasets, and including explanations of the individual steps. These analyses will be broadly applicable to many VLA data sets.


If you are new to CASA, you may start with

Getting Started in CASA


VLA Data Reduction Tutorials

High frequency (36GHz), spectral line data reduction: Carbon Star IRC+10216

  • This tutorial requires to download a dataset 1.1GB in size

Calibrate and make image cubes of the line emission from this asymptotic giant branch star. This is a high-frequency VLA dataset. Includes:

  • Inspecting data; basic flagging & calibration
  • Subtracting continuum emission
  • Imaging the spectral lines
  • Imaging the continuum
  • Image analysis
  • Self-calibration

6cm Continuum Imaging, Mosaicking: Supernova Remnant 3C391

  • This tutorial requires to download a dataset 3.1GB in size

Calibrate VLA continuum data, image a mosaic of the region in Stokes I. Includes:

  • Inspecting data; basic flagging
  • Calibration
  • Image Analysis
  • Self-calibration

Polarization Calibration based on CASA pipeline standard reduction: The radio galaxy 3C75

  • This tutorial requires to download a dataset 10GB in size

This tutorial demonstrates continuum calibration with the standard VLA pipeline and focuses on linear polarization calibration based on pipeline products, as well as full Stokes wide-field imaging and analysis. It includes:

  • Instructions on how to execute the VLA pipeline
  • How to modify pipeline products for polarization calibration
  • Linear Polarization Calibration
  • Wide-field Polarization Imaging
  • Self-calibration
  • Analysis of Polarization Products

P-band continuum imaging data reduction tutorial: 3C129

  • This tutorial requires to download a dataset 26GB in size

This low frequency VLA tutorial for the observation of radio galaxy 3C 129 focuses on low frequency wide-fractional-bandwidth data in the sub GHz regime and demonstrates multi-frequency synthesis imaging with w-projection. This includes:

  • Basic flagging and evaluation
  • Automatic RFI Excision
  • Ionospheric Calibration
  • Self - Calibration
  • Widefield imaging

MG0414+0534 P-band Spectral Line Tutorial

  • This tutorial is based on an archival data-set of 142 GB in size, but we will extract only a 33GB portion of this data-set to work on.

This VLA P-band tutorial is aimed at calibrating and making an image cube of line-emission centered on 390.6 MHz. It includes:

  • P-band spectral-line observing strategies
  • Basic flagging options
  • Low-frequency calibration and self-calibration
  • Spectral-line imaging

HI 21 cm Spectral Line Data Reduction Tutorial

  • This tutorial is based on an archival data-set of 85 GB in size.

This HI 21cm spectral line tutorial is aimed at calibrating and making an image cube of the dwarf galaxy LEDA4 4055. It includes:

  • Finding the HI 21 cm spectral line in LEDA 44055
  • Basic flagging
  • Splitting out the HI Line
  • Spectral-line imaging
  • Continuum Subtraction

VLA Topical Guides

Flagging VLA Data in CASA

  • This tutorial requires to download a dataset 4.9GB in size

This tutorial describes different flagging techniques, including:

  • Identifying Problematic Antennas from the Operator Logs
  • Online Flags
  • Shadowing, zeroes, quacking, flagmanager, Hanning smoothing
  • Automatic RFI excision (TFCrop, RFlag)
  • Interactive Flagging (plotms, msview)
  • Flagging Summary & Report

Imaging VLA Data in CASA

  • This tutorial requires to download a dataset 1.2GB in size

The Imaging topical guide shows annotated examples of different imaging techniques that are applicable to different science applications. This tutorial includes:

  • An Introduction to the CLEAN algorithm, data and imaging weights, primary and synthesized beams
  • Clean Output Images
  • Dirty Image, Regular CLEAN & RMS Noise, CLEAN with different Weights
  • Multi-Scale CLEAN
  • Multi-Scale, Wide-Field CLEAN (w-projection)
  • Multi-Scale, Multi-Term Frequency Synthesis
  • Multi-Scale, Multi-Term Frequency, Widefield CLEAN
  • Imaging Outlier Fields
  • Primary Beam Correction
  • Imaging Spectral Cubes, Beam per Plane
  • Image Header, Image Conversion

Self-calibration of VLA Data

This tutorial demonstrates how to perform self-calibration on a VLA data set, covering aspects such as how to choose the time interval, signal-to-noise ratio, and combination over spectral windows and polarizations.

VLA Multi-Configuration Data Combination

The VLA Data Combination Tutorial provides guidance on the combination of multi-configuration VLA data sets (in this case VLA A, B, C and D configurations). The data are re-weighted in two different ways, combined, and imaged.

Source Subtraction in VLA data

This topical guide demonstrates how to remove a time variable source from the visibility data.

Correcting for a Spectral Index in Bandpass Calibration

This tutorial explains how to obtain a bandpass solution when the bandpass calibrator is a source with an unknown spectral index. This is typically encountered at high frequency observations, where the standard VLA flux density calibrators are too weak for high signal-to-noise bandpass solutions.


VLA CASA Simulation Guide

The VLA Protoplanetary Disk Simulation Guide shows examples on how to simulate VLA data based on model images. The tutorial will explain the main simulation tools, apply different parameters to simulations, and compares the results to the VLA exposure calculator.

VLA CASA Pipeline Guide

The VLA CASA Pipeline Guide provides an example of a VLA CASA pipeline run. Whereas the VLA Pipeline Web Page describes the pipeline structure, requirements, execution options including restoration, pipeline output products, and pipeline modifications, this CASA guide is a detailed walkthrough of the weblog and provides interpretations of pipeline plots, tables, and Quality Assurance (QA) metrics.

Pre-EVLA Data Reduction Guides

For data reduction of pre-EVLA upgrade VLA data, we provide separate, pre-upgrade VLA data reduction tutorials