N891 simdata (CASA 3.3)

From CASA Guides
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Simulating Observations in CASA

Old version: N891 simdata2.

To create a script of the Python code on this page see Extracting scripts from these tutorials.

Nearby edge-on spiral

Roughly modeled after NGC891

This article is under construction. Watch this space!

- mostly correct, but probably not very thoroughly explained. Updated for CASA 3.3

  • The cube is being binned to a coarser velocity resolution in order to speed the simulation. The fits file is grs-12kms.fits
# In CASA
# Initializing sim_observe
# Laying down some basic ground rules
default 'sim_observe'
project = 'n891d'
skymodel = 'grs-12kms.fits'
  • Units: K - first convert to flux surface brightness: Jy/Sr = 2x1023 k T / λ2, = 4x108T at 110GHz.
# In CASA
# Setting the new frequency of the central channel
incenter = '110.1777GHz'
  • Now we need to decide if this model data will work at the desired pixel scale
  • The GRS resolution of 40" at ~10kpc is 0.04" at 10Mpc, so we should be able to do a simulation of observing at ~0.1-0.2". The resolution plot (See Figure 1) indicates that for ALMA at 100GHz, configuration 20 is appropriate.
Figure 1: Resolution plot.
  • If we intend to set incell=0.2arcsec in simdata, then the cube needs to be multiplied by 4x108 * (.04/206265)2 = 1.4x10-5 to obtain Jy/pixel. The cube peaks at ~20K, so we can perform the simulation with inbright=3e-4, which should yield a peak of ~1mJy/bm.
  • Will we be dominated by the noise in the input model? Input noise ~150mK or S/N~20, so at our scaled intensity, ~0.05 mJy/bm. The exposure time calculator says that ALMA will achieve 2.5mJy/bm in 2 hours for the input 212m/s channel width (0.075MHz), so the noise in the input model should not affect our results.
# In CASA
# Setting the new channel width
inwidth = '0.075MHz'
  • We do have a sensitivity issue though - if we decrease the spectral resolution by a factor of 6 (bin the input channels in some other program - simdata will know how to do that in the future but not yet), and plan for 3 8-hr tracks, then the sensitivity calculator suggests that we'll get <0.25mJy rms, or S/N>10 per beam. Rather than simulate 3 days of observing, I'll increase inbright by sqrt(3) and simulate one 8 hour track.
Figure 2: here's the cube with the simdata's scaling and World Coordinate System


# In CASA
# Scaling the surface brightness
inbright = '1.4e-4'
  • the ALMA 12m primary beam is 50" so we'd space a mosaic by 25", but the model cube has 326x357 pixels, or 13 arcsec with our small pixels. That's a lot smaller than the primary beam, so it doesn't matter much what output image size we ask for.
# In CASA
# Finish up the image model, and setting up the pointing
indirection = 'J2000 7h00m34 -23d03m00'
incell = '0.2arcsec'
setpointings = True
integration = '300s'
pointingspacing = '25arcsec'
mapsize = '60arcsec'

There are 659 channels in the input cube, but as noted above we want to bin those to 109 channels of 1.2 km/s each.

# In CASA
# Finish up the rest of the settings for this run of sim_observe
graphics = 'both'
verbose = True
overwrite = True
observe = True
antennalist = 'alma;0.5arcsec'
totaltime = '3600s'
sim_observe()  # Run sim_observe to create the simulated data we need
default 'sim_analyze'  
project = 'n891d'
image=T
vis = project+'.alma_0.5arcsec.ms'
sim_analyze()  # All other default settings are OK in sim_analyze


N891.grs-24-cube.coord18-59-59.976-40d00m01.972.png
Figure 3: a spectral profile in the box marked in green

Input:
N891d.skymodel.png
Predict:
N891d.predict.png
Image:
N891d.image.png
Analyze:
N891d.analysis.png

Figure 4: Sample results