JVLA - Priori Flagging, Auto-Flagging, and Imaging in CASA: Difference between revisions

From CASA Guides
Jump to navigationJump to search
No edit summary
Line 1: Line 1:
* '''Topical guide, part 1 of [http://www. 2].'''
* '''Topical guide, part 1 of [http://www. 2].'''
* '''This CASA guide is designed for CASA 4.5.0'''   
* '''This CASA guide is designed for CASA 4.5.2'''   


**This guide is under construction**


== Overview ==
== Overview ==


This CASA guide will cover the importing of a SDM-BDF (Science Data Model-Binary Data File) into CASA (Common Astronomical Science Application), creating a MS (Measurement Set) in the process. It will also cover time averaging, and basic initial data flagging, including shadow, zero clipping, tfcrop, rflag, quacking, and online flagging.
This CASA guide will cover priori data flagging, including online flagging, shadowing, zero clipping, and quacking. We will then move on to auto-flagging RFI via tfcrop and rflag.


[http://www. Basic and Advanced Imaging in CASA, Part 2] of the guide covers advanced imaging, including msmfs, multiscale on regular images, spectral indices, w-projection, wide field mode, outlier fields, and interactive mode.  
[http://www. Part 2] of the guide covers advanced imaging, including Multi-Scale, MS-MFS, W/AW-Projection, widefield, outlier fields, spectral index imaging, and imaging in interactive mode. Other topics include primary beam corrections, small scale bias, and weighting.


We will be utilizing data taken with the Karl G. Jansky, Very Large Array, of a supernova remnant [http://simbad.u-strasbg.fr/simbad/sim-id?Ident=SNR+G055.7%2B03.4&NbIdent=1&Radius=2&Radius.unit=arcmin&submit=submit+id G055.7+3.4.]. The data were taken on August 23, 2010, in the first D-configuration for which the new wide-band capabilities of the WIDAR (Wideband Interferometric Digital ARchitecture) correlator were available.  The 8-hour-long observation includes all available 1 GHz of bandwidth in L-band, from 1-2 GHz in frequency.
We will be utilizing data taken with the Karl G. Jansky, Very Large Array, of a supernova remnant [http://simbad.u-strasbg.fr/simbad/sim-id?Ident=SNR+G055.7%2B03.4&NbIdent=1&Radius=2&Radius.unit=arcmin&submit=submit+id G055.7+3.4.]. The data were taken on August 23, 2010, in the first D-configuration for which the new wide-band capabilities of the WIDAR (Wideband Interferometric Digital ARchitecture) correlator were available.  The 8-hour-long observation includes all available 1 GHz of bandwidth in L-band, from 1-2 GHz in frequency.


== Obtaining the data ==
== Obtaining the Data ==


We will be utilizing the original data set <font color=red>(170GB) </font>, which can be downloaded from the [https://archive.nrao.edu/archive/advquery.jsp NRAO Science Data Archive]. We have several search options for finding this observation. We will search for it by using the date of the observation. Set ''Dates From'' and ''To'' to 2010-Aug-23 and submit the query. The results should display all the observations run on that day. We will look for the archive file name AB1345_sb1800808_1.55431.004049953706, which should be near the top. Check the box for the file.
A copy of the data <font color=green>(5.1GB)</font> can be downloaded here: ###PROVIDE LINK###


We want to download the raw data, therefore under ''Choose download data format :'', choose ''SDM-BDF dataset (all files)''. Also, let's check the box ''Create MS or SDM tar file''. Now enter your email address at the top, and click on ''Get My Data''. On the next page, click on the ''Retrieve over internet'' button. The archive will now create a copy of the data in the default destination directory, and you should receive an email once it is ready to be downloaded.  
For convenience, we will start with this data set that has been imported using importasdm().  


Once the tar file has been downloaded, we will untar the file:
''<nowiki>importasdm(asdm='AB1345_sb1800808_1.55431.004049953706', vis='SNR_G55.ms', process_flags=True,
<source lang="bash">
          tbuff=1.5, applyflags=False, outfile='SNR_G55.ms.onlineflags.txt', flagbackup=False)</nowiki>''
tar -xvf AB1345_sb1800808_1.55431.004049953706.tar
</source>


This should take several minutes, but once it's complete, you will have a directory called ''AB1345_sb1800808_1.55431.004049953706'' which is the raw data.  
*process_flags=True: This parameter controls the creation of online flags from the Flag.xml SDM table. It will create online flags in the FLAG_CMD sub-table within the MS (more on this later).
*tbuff=1.5: This parameter adds a time "buffer" padding to the flags in both directions to deal with timing mismatches. This is important for JVLA data taken before April 2011. This value should be set to 1.5x integration time. This particular observation had 1 second integrations. (CASA Cookbook section 2.2.2 and 3.5.1.3)
*applyflags=False: We will apply these flags later in the tutorial.
*outfile='SNR_G55.ms.onlineflags.txt': This will create a text file with a list of online flags that can be applied. Created just for convenience, and won't be used during the tutorial.


== Start and confirm your version of CASA ==
Split and time-averaged using the new task split2() task which uses the mstransform() framework. Please note that split2 will be replacing split in future CASA releases.


Start CASA by typing '''casa''' on a terminal command line.  If you have not used CASA before, some helpful tips are available on the [[Getting Started in CASA]] page.
''split2(vis='SNR_G55.ms', outputvis='SNR_G55_10s.ms', field='3~5', spw='4~5,7~8', antenna='!ea06,ea17,ea20,ea26', datacolumn='data', keepflags=False, timebin='10s')''


This guide has been written for CASA release 4.5.0. Please confirm your version before proceeding by checking the message in the command line interface window or the CASA logger after startup.
* field: Several fields have been removed which we won't be utilizing. Only keeping fields 3-5.
* spw: Several spectral windows have been removed which were polluted with RFI, which neither auto-flagging nor hand flagging could remedy. Keeping spectral windows 4,5,7,8.  
* antenna: Several antennas have been removed (!), which at the time of the observation, didn't have an L-Band receiver installed. (more on this later)
* Time-averaged to 10-seconds, to reduce size and processing time when running tasks.


== Importing data into CASA ==
The original data set is roughly <font color=red>(170GB) </font> in size, and can be downloaded from the [https://archive.nrao.edu/archive/advquery.jsp NRAO Science Data Archive]. The archive file name is AB1345_sb1800808_1.55431.004049953706. Note that within the archive, you can also request specific scans which can be time averaged, with online flags applied.


For this tutorial, we will be running tasks using the ''task (parameter = value)'' syntax. When called in this manner, all parameters not explicitly set will use their default values.  
Once you've downloaded the file, let's untar it:
<source lang="bash">
tar -xzvf SNR_G55_10s.ms.tar.gz
</source>
 
This should take several minutes, but once it's complete, you will have a directory called SNR_G55_10s.ms <font color=green>(6.1GB)</font> and SNR_G55_10s.pos, which are the MS (Measurement Set) and antenna position corrections.


<source lang="python">
The antenna position corrections were generated using gencal:<br />
# In CASA
''gencal(vis='SNR_G55_10s.ms', caltable='SNR_G55_10s.pos', caltype='antpos')''
importasdm(asdm='AB1345_sb1800808_1.55431.004049953706', vis='SN_G55.ms', process_flags=True,
          tbuff=1.5, applyflags=False, outfile='SN_G55.ms.onlineflags.txt', flagbackup=False)  
</source>


* vis= 'SN_G55.ms': This is the output MS that will be written.
In order to save time, we've included them in the tar file and will be applying them later in the tutorial.
* process_flags=True: This parameter controls the creation of online flags from the Flag.xml SDM table. It will create online flags in the FLAG_CMD sub-table within the MS (more on this later).
* tbuff=1.5: This parameter adds a time "buffer" padding to the flags in both directions to deal with timing mismatches. This is important for JVLA data taken before April 2011. This value should be set to 1.5x integration time. This particular observation had 1 second integrations. (CASA Cookbook section 2.2.2 and 3.5.1.3)
* applyflags=False: We will apply these flags later in the tutorial.
* outfile='SN_G55.ms.onlineflags.txt' : This will create a text file with a list of online flags.
* flagbackup=False: Since we aren't applying any flags at the moment, we'll leave this as ''False'' in order to save disk space.  


Once the task is completed, you should have a new directory called ''SN_G55.ms''. We can now continue with our initial data flagging using this MS. Also, in order to save disk space, we can now delete the SDM-BDF directory. 
== Starting CASA 4.5.2 ==


== Time averaging MS ==
Start CASA by typing '''casa''' on a terminal command line.  If you have not used CASA before, some helpful tips are available on the [[Getting Started in CASA]] page.


Due to the large size of the data set, running tasks within CASA may take several minutes. To allow us to run processes more quickly, we will time average the data to every 10-seconds using the [http://casa.nrao.edu/docs/TaskRef/mstransform-task.html mstransform] task. This will reduce our MS from 172GB to 17GB.  
This guide has been written for CASA version 4.5.2.  Please confirm your version before proceeding by checking the message in the command line interface window or the CASA logger after startup.


<source lang="python">
For this tutorial, we will be running tasks using the ''task (parameter = value)'' syntax. When called in this manner, all parameters not explicitly set will use their default values.
# In CASA
mstransform(vis='SN_G55.ms', outputvis='SN_G55_10s.ms', datacolumn='data', timeaverage=True, timebin='10s')
</source>


== Preliminary data evaluation ==  
== Preliminary Data Evaluation ==  


As a first step, use {{listobs}} to have a look at the MS:
As a first step, use {{listobs}} to have a look at the MS:
Line 64: Line 63:
<source lang="python">
<source lang="python">
# In CASA
# In CASA
listobs(vis='SN_G55_10s.ms', listfile='SN_G55_10s.listobs')
listobs(vis='SNR_G55_10s.ms', listfile='SNR_G55_10s.listobs')
</source>
</source>
*listfile: Creates a text document with details for the observation.


<pre>
<pre>
##########################################
#CASA log when listfile is not defined
##### Begin Task: listobs            #####
2016-03-07 16:54:23 INFO listobs  ##########################################
listobs(vis="SN_G55_10s.ms",selectdata=True,spw="",field="",antenna="",
2016-03-07 16:54:23 INFO listobs  ##### Begin Task: listobs            #####
        uvrange="",timerange="",correlation="",scan="",intent="",
2016-03-07 16:54:23 INFO listobs  listobs(vis="SNR_G55_10s.ms",selectdata=True,spw="",field="",antenna="",
        feed="",array="",observation="",verbose=True,listfile="SN_G55_10s.listobs",
2016-03-07 16:54:23 INFO listobs   uvrange="",timerange="",correlation="",scan="",intent="",
        listunfl=False,cachesize=50,overwrite=False)
2016-03-07 16:54:23 INFO listobs   feed="",array="",observation="",verbose=True,listfile="",
================================================================================
2016-03-07 16:54:23 INFO listobs   listunfl=False,cachesize=50,overwrite=False)
          MeasurementSet Name:  /path/to/your/directory/SN_G55_10s.ms      MS Version 2
2016-03-07 16:54:23 INFO listobs  ================================================================================
================================================================================
2016-03-07 16:54:23 INFO listobs     MeasurementSet Name:  /lustre/aoc/sciops/CASA_Tutorials/SNR_G55_10s.ms      MS Version 2
     Observer: Dr. Sanjay Sanjay Bhatnagar    Project: uid://evla/pdb/1072564   
2016-03-07 16:54:23 INFO listobs  ================================================================================
Observation: EVLA
2016-03-07 16:54:23 INFO listobs     Observer: Dr. Sanjay Sanjay Bhatnagar    Project: uid://evla/pdb/1072564   
Data records: 86242968       Total elapsed time = 28722 seconds
2016-03-07 16:54:23 INFO listobs  Observation: EVLA
  Observed from  23-Aug-2010/00:35:39.0  to  23-Aug-2010/08:34:21.0 (UTC)
2016-03-07 16:54:25 INFO listobs  Data records: 3780000       Total elapsed time = 26926 seconds
 
2016-03-07 16:54:25 INFO listobs    Observed from  23-Aug-2010/00:56:36.0  to  23-Aug-2010/08:25:22.0 (UTC)
  ObservationID = 0        ArrayID = 0
2016-03-07 16:54:33 INFO listobs  
  Date       Timerange (UTC)          Scan  FldId FieldName             nRows    SpwIds   Average Interval(s)    ScanIntent
2016-03-07 16:54:33 INFO listobs    ObservationID = 0        ArrayID = 0
  23-Aug-2010/00:35:39.0 - 00:37:39.0     1     0 1331+305=3C286            9072 [0,1]  [10, 10] [CALIBRATE_AMPLI#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs  Date       Timerange (UTC)          Scan  FldId FieldName   nRows    SpwIds       Average Interval(s)    ScanIntent
              00:37:39.0 - 00:40:09.0     2     0 1331+305=3C286          11340 [0,1]  [10, 10] [CALIBRATE_AMPLI#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs  23-Aug-2010/00:56:36.0 - 00:58:06.0   14     0 J1925+2106    12600 [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
              00:40:09.0 - 00:41:38.0     3     1 J1331+3030              27216 [2,3,4,5,6,7,8,9]  [9.89, 9.89, 9.89, 9.89, 9.89, 9.89, 9.89, 9.89] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       00:58:06.0 - 00:59:36.0   15     0 J1925+2106    12600 [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
              00:41:38.0 - 00:43:08.0     4     1 J1331+3030              27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       00:59:36.0 - 01:01:05.0   16     0 J1925+2106    12600 [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [CALIBRATE_PHASE#UNSPECIFIED]
              00:43:08.0 - 00:44:38.0     5     1 J1331+3030              27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:01:05.0 - 01:02:35.0   17     0 J1925+2106    12600 [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
              00:44:38.0 - 00:46:08.0     6     1 J1331+3030              27216 [2,3,4,5,6,7,8,9] [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:02:35.0 - 01:04:05.0   18     0 J1925+2106    12600 [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
              00:46:08.0 - 00:47:37.0     7     1 J1331+3030              27216 [2,3,4,5,6,7,8,9]  [9.89, 9.89, 9.89, 9.89, 9.89, 9.89, 9.89, 9.89] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:04:05.0 - 01:05:34.0   19     0 J1925+2106    12600 [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [CALIBRATE_PHASE#UNSPECIFIED]
              00:47:37.0 - 00:49:07.0     8     1 J1331+3030              27216 [2,3,4,5,6,7,8,9] [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:05:34.0 - 01:07:04.0   20     0 J1925+2106    12600 [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
              00:49:07.0 - 00:50:37.0     9     2 J1407+2827              27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:07:04.0 - 01:08:34.0   21     1 G55.7+3.4      12600 [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
              00:50:37.0 - 00:52:07.0    10     2 J1407+2827              27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:08:34.0 - 01:10:04.0    22     1 G55.7+3.4      12600 [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
              00:52:07.0 - 00:53:36.0    11     2 J1407+2827              27216 [2,3,4,5,6,7,8,9]  [9.89, 9.89, 9.89, 9.89, 9.89, 9.89, 9.89, 9.89] [CALIBRATE_PHASE#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:10:04.0 - 01:11:34.0    23     1 G55.7+3.4      12600 [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
              00:53:36.0 - 00:55:06.0    12     2 J1407+2827              27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:11:34.0 - 01:13:03.0    24     1 G55.7+3.4      12600 [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [OBSERVE_TARGET#UNSPECIFIED]
              00:55:06.0 - 00:56:36.0    13     2 J1407+2827              27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:13:03.0 - 01:14:33.0    25     1 G55.7+3.4      12600 [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
              00:56:36.0 - 00:58:06.0    14     3 J1925+2106              27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:14:33.0 - 01:16:03.0    26     1 G55.7+3.4      12600 [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
              00:58:06.0 - 00:59:36.0    15     3 J1925+2106              27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:16:03.0 - 01:17:33.0    27     1 G55.7+3.4      12600 [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
              00:59:36.0 - 01:01:05.0    16     3 J1925+2106              27216 [2,3,4,5,6,7,8,9]  [9.89, 9.89, 9.89, 9.89, 9.89, 9.89, 9.89, 9.89] [CALIBRATE_PHASE#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:17:33.0 - 01:19:02.0    28     1 G55.7+3.4      12600 [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [OBSERVE_TARGET#UNSPECIFIED]
              01:01:05.0 - 01:02:35.0    17     3 J1925+2106              27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:19:02.0 - 01:20:32.0    29     1 G55.7+3.4      12600 [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
              01:02:35.0 - 01:04:05.0    18     3 J1925+2106              27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:20:32.0 - 01:22:02.0    30     1 G55.7+3.4      12600 [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
              01:04:05.0 - 01:05:34.0    19     3 J1925+2106              27216 [2,3,4,5,6,7,8,9]  [9.89, 9.89, 9.89, 9.89, 9.89, 9.89, 9.89, 9.89] [CALIBRATE_PHASE#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:22:02.0 - 01:23:32.0    31     1 G55.7+3.4      12600 [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
              01:05:34.0 - 01:07:04.0    20     3 J1925+2106              27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:23:32.0 - 01:25:01.0    32     1 G55.7+3.4      12600 [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [OBSERVE_TARGET#UNSPECIFIED]
              01:07:04.0 - 01:08:34.0    21     4 G55.7+3.4               27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:25:01.0 - 01:26:31.0    33     1 G55.7+3.4      12600 [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
              01:08:34.0 - 01:10:04.0    22     4 G55.7+3.4               27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:26:31.0 - 01:28:01.0    34     1 G55.7+3.4     12600 [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
              01:10:04.0 - 01:11:34.0    23     4 G55.7+3.4               27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:28:01.0 - 01:29:31.0    35     1 G55.7+3.4     12600 [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
              01:11:34.0 - 01:13:03.0    24     4 G55.7+3.4               27216 [2,3,4,5,6,7,8,9]  [9.89, 9.89, 9.89, 9.89, 9.89, 9.89, 9.89, 9.89] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:29:31.0 - 01:31:00.0    36     1 G55.7+3.4     12600 [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [OBSERVE_TARGET#UNSPECIFIED]
              01:13:03.0 - 01:14:33.0    25     4 G55.7+3.4               27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:31:00.0 - 01:32:30.0    37     1 G55.7+3.4     12600 [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
              01:14:33.0 - 01:16:03.0    26     4 G55.7+3.4               27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:32:30.0 - 01:34:00.0    38     1 G55.7+3.4     12600 [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
            <snip>                 
2016-03-07 16:54:33 INFO listobs       01:34:00.0 - 01:35:30.0    39     1 G55.7+3.4     12600 [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
              08:16:24.0 - 08:17:54.0   308     5 0542+498=3C147          27216 [2,3,4,5,6,7,8,9] [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:35:30.0 - 01:36:59.0   40     1 G55.7+3.4      12600 [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [OBSERVE_TARGET#UNSPECIFIED]
              08:17:54.0 - 08:19:23.0   309      5 0542+498=3C147          27216 [2,3,4,5,6,7,8,9]  [9.89, 9.89, 9.89, 9.89, 9.89, 9.89, 9.89, 9.89] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:36:59.0 - 01:38:29.0   41      0 J1925+2106    12600 [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
              08:19:23.0 - 08:20:53.0   310     5 0542+498=3C147          27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:38:29.0 - 01:39:59.0   42     0 J1925+2106    12600 [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
              08:20:53.0 - 08:22:23.0   311     5 0542+498=3C147          27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:39:59.0 - 01:41:29.0   43     0 J1925+2106    12600 [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
              08:22:23.0 - 08:23:52.0   312     5 0542+498=3C147          27216 [2,3,4,5,6,7,8,9]  [9.89, 9.89, 9.89, 9.89, 9.89, 9.89, 9.89, 9.89] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       01:41:29.0 - 01:42:58.0   44     1 G55.7+3.4      12600 [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [OBSERVE_TARGET#UNSPECIFIED]
              08:23:52.0 - 08:25:22.0  313     5 0542+498=3C147          27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
<snip>
              08:25:22.0 - 08:26:52.0  314     6 J0319+4130              27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       08:11:54.0 - 08:13:24.0  305     1 G55.7+3.4      12600 [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
              08:26:52.0 - 08:28:22.0  315     6 J0319+4130              27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       08:13:24.0 - 08:14:54.0  306     1 G55.7+3.4      12600 [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
              08:28:22.0 - 08:29:52.0  316     6 J0319+4130              27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       08:14:54.0 - 08:16:24.0  307     2 0542+498=3C147 12600 [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
              08:29:52.0 - 08:31:21.0  317     6 J0319+4130              27216 [2,3,4,5,6,7,8,9]  [9.89, 9.89, 9.89, 9.89, 9.89, 9.89, 9.89, 9.89] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       08:16:24.0 - 08:17:54.0  308     2 0542+498=3C147 12600 [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
              08:31:21.0 - 08:32:51.0  318     6 J0319+4130              27216 [2,3,4,5,6,7,8,9]  [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       08:17:54.0 - 08:19:23.0  309     2 0542+498=3C147 12600 [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
              08:32:51.0 - 08:34:21.0  319     6 J0319+4130              27216 [2, 3, 4, 5, 6, 7, 8, 9]  [10, 10, 10, 10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs       08:19:23.0 - 08:20:53.0  310     2 0542+498=3C147 12600 [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
          (nRows = Total number of rows per scan)
2016-03-07 16:54:33 INFO listobs       08:20:53.0 - 08:22:23.0  311     2 0542+498=3C147 12600 [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
Fields: 7
2016-03-07 16:54:33 INFO listobs       08:22:23.0 - 08:23:52.0  312      2 0542+498=3C147 12600  [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
  ID  Code Name                RA              Decl          Epoch  SrcId      nRows
2016-03-07 16:54:33 INFO listobs       08:23:52.0 - 08:25:22.0   313      2 0542+498=3C147 12600  [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
  0   E    1331+305=3C286      13:31:08.287984 +30.30.32.95886 J2000  0         204120
2016-03-07 16:54:33 INFO listobs           (nRows = Total number of rows per scan)
   1    N    J1331+3030          13:31:08.287984 +30.30.32.95886 J2000  1        1626912
2016-03-07 16:54:33 INFO listobs  Fields: 3
  2    J    J1407+2827          14:07:00.394410 +28.27.14.68997 J2000   2       1357776
2016-03-07 16:54:33 INFO listobs  ID  Code Name                RA              Decl          Epoch   SrcId      nRows
  3    D    J1925+2106          19:25:59.605371 +21.06.26.16218 J2000  3       11669616
2016-03-07 16:54:33 INFO listobs   0   D   J1925+2106         19:25:59.605371 +21.06.26.16218 J2000  0        541800
  4    NONE G55.7+3.4          19:21:40.000000 +21.45.00.00000 J2000  4      67855536
2016-03-07 16:54:33 INFO listobs  1   NONE G55.7+3.4          19:21:40.000000 +21.45.00.00000 J2000   1       3150000
  5    N    0542+498=3C147      05:42:36.137916 +49.51.07.23356 J2000   5        1899072
2016-03-07 16:54:33 INFO listobs   2   N   0542+498=3C147     05:42:36.137916 +49.51.07.23356 J2000   2          88200
   6   N   J0319+4130         03:19:48.160102 +41.30.42.10305 J2000  6        1629936
2016-03-07 16:54:33 INFO listobs Spectral Windows: (5 unique spectral windows and 1 unique polarization setups)
Spectral Windows: (10 unique spectral windows and 1 unique polarization setups)
2016-03-07 16:54:33 INFO listobs   SpwID  Name     #Chans  Frame  Ch0(MHz)  ChanWid(kHz)  TotBW(kHz) CtrFreq(MHz) BBC Num  Corrs         
  SpwID  Name      #Chans  Frame  Ch0(MHz)  ChanWid(kHz)  TotBW(kHz) CtrFreq(MHz) BBC Num  Corrs         
2016-03-07 16:54:33 INFO listobs  0      Subband:0     64  TOPO    1256.000      2000.000    128000.0  1319.0000        4  RR  RL  LR  LL
  0      Subband:0    64  TOPO    1284.000      2000.000    128000.0   1347.0000       4  RR  RL  LR  LL
2016-03-07 16:54:33 INFO listobs  1     Subband:2     64  TOPO    1384.000      2000.000    128000.0  1447.0000        4  RR  RL  LR  LL
  1      Subband:0    64   TOPO   1796.000      2000.000   128000.0  1859.0000        8  RR  RL  LR  LL
2016-03-07 16:54:33 INFO listobs   2     Subband:1     64  TOPO    1648.000      2000.000    128000.0  1711.0000        8 RR  RL  LR  LL
  2     Subband:3    64  TOPO    1000.000      2000.000    128000.0   1063.0000        4 RR RL  LR  LL
2016-03-07 16:54:33 INFO listobs   3     Subband:0     64  TOPO    1776.000      2000.000    128000.0  1839.0000        8  RR  RL  LR  LL
   3     Subband:1     64  TOPO    1128.000      2000.000    128000.0  1191.0000        4  RR  RL  LR  LL
2016-03-07 16:54:33 INFO listobs  Sources: 15
  4     Subband:0     64  TOPO    1256.000      2000.000    128000.0  1319.0000        4  RR  RL  LR  LL
2016-03-07 16:54:33 INFO listobs   ID   Name                SpwId RestFreq(MHz) SysVel(km/s)
   5     Subband:2     64  TOPO    1384.000      2000.000    128000.0  1447.0000        4 RR  RL  LR  LL
2016-03-07 16:54:33 INFO listobs   0    J1925+2106          0    -              -           
   6     Subband:3     64  TOPO    1520.000      2000.000    128000.0  1583.0000        8  RR  RL  LR  LL
2016-03-07 16:54:33 INFO listobs   0   J1925+2106          1    -              -           
  7      Subband:1    64   TOPO    1648.000      2000.000    128000.0   1711.0000        8 RR  RL  LR  LL
2016-03-07 16:54:33 INFO listobs   0    J1925+2106          2     -              -             
   8      Subband:0    64  TOPO    1776.000      2000.000    128000.0  1839.0000        8  RR  RL  LR  LL
2016-03-07 16:54:33 INFO listobs   0    J1925+2106          3     -              -             
  9      Subband:2    64   TOPO   1904.000      2000.000    128000.0  1967.0000        8  RR  RL  LR  LL
2016-03-07 16:54:33 INFO listobs   1    G55.7+3.4          0     -              -             
Sources: 50
2016-03-07 16:54:33 INFO listobs   1    G55.7+3.4          1     -              -             
   ID  Name                SpwId RestFreq(MHz)  SysVel(km/s)
2016-03-07 16:54:33 INFO listobs   1    G55.7+3.4           2     -              -             
  0    1331+305=3C286      0     -              -             
2016-03-07 16:54:33 INFO listobs  1    G55.7+3.4          3     -              -             
   0    1331+305=3C286      1     -              -             
2016-03-07 16:54:33 INFO listobs   2   0542+498=3C147      0     -              -             
   1    J1331+3030          2     -              -             
2016-03-07 16:54:33 INFO listobs   2   0542+498=3C147      1     -              -             
   1    J1331+3030          3    -              -             
2016-03-07 16:54:33 INFO listobs   2    0542+498=3C147      2    -              -             
   1    J1331+3030          4    -              -             
2016-03-07 16:54:33 INFO listobs  2    0542+498=3C147      3    -              -             
  1    J1331+3030          5     -              -             
2016-03-07 16:54:34 INFO listobs  Antennas: 27:
   1   J1331+3030          6     -              -             
2016-03-07 16:54:34 INFO listobs   ID   Name  Station   Diam.   Long.        Lat.                Offset from array center (m)                ITRF Geocentric coordinates (m)       
  1    J1331+3030          7    -             -          
2016-03-07 16:54:34 INFO listobs                                                                East      North    Elevation        x              y              z
   1   J1331+3030          8     -              -             
2016-03-07 16:54:34 INFO listobs   0   ea01  W09      25.0 m  -107.37.25.2  +33.53.51.0  -521.9416  -332.7766   -1.2001 -1601710.017000 -5042006.925200  3554602.355600
  1    J1331+3030          9    -             -          
2016-03-07 16:54:34 INFO listobs   1   ea02  E02      25.0 m  -107.37.04.4  +33.54.01.1      9.8240    -20.4293   -2.7806 -1601150.060300 -5042000.619800  3554860.729400
   2    J1407+2827          2    -              -             
2016-03-07 16:54:34 INFO listobs   2   ea03  E09      25.0 m  -107.36.45.+33.53.53.6    506.056    -251.8670    -3.5825 -1600715.950800 -5042273.187000  3554668.184500
  2    J1407+2827          3    -              -             
2016-03-07 16:54:34 INFO listobs   3   ea04  W01      25.0 m  -107.37.05.9  +33.54.00.5   -27.3562    -41.3030   -2.7418 -1601189.030140 -5042000.493300  3554843.425700
  2    J1407+2827          4    -             -          
2016-03-07 16:54:34 INFO listobs   4    ea05  W08      25.0 m  -107.37.21.+33.53.53.0  -432.1167  -272.1478   -1.5054 -1601614.091000 -5042001.652900  3554652.509300
  2    J1407+2827          5    -             -          
2016-03-07 16:54:34 INFO listobs   5    ea06  N06      25.0 m  -107.37.06.9  +33.54.10.3   -54.0649    263.8778    -4.2273 -1601162.591000 -5041828.999000  3555095.896400
   2    J1407+2827          6    -              -           
2016-03-07 16:54:34 INFO listobs   6   ea07  E05      25.0 m  -107.36.58.4  +33.53.58.8    164.9788   -92.8032    -2.5268 -1601014.462000 -5042086.252000  3554800.799800
   2    J1407+2827          7    -              -           
2016-03-07 16:54:34 INFO listobs   7   ea08  N01      25.0 m  -107.37.06.0  +33.54.01.8    -30.8810     -1.4664    -2.8597 -1601185.634945 -5041978.156586  3554876.424700
   2   J1407+2827          8    -             -          
2016-03-07 16:54:34 INFO listobs   8   ea09  E06      25.0 m  -107.36.55.6 +33.53.57.7   236.9058  -126.3369   -2.4443 -1600951.588000 -5042125.911000  3554773.012300
  2    J1407+2827          9    -             -          
2016-03-07 16:54:34 INFO listobs   9   ea10  N03      25.0 m  -107.37.06.3 +33.54.04.8   -39.0773    93.0192    -3.3330 -1601177.376760 -5041925.073200  3554954.584100
   3   J1925+2106          2    -             -          
2016-03-07 16:54:34 INFO listobs  10  ea11  E04      25.0 m  -107.37.00.8  +33.53.59.7    102.8054    -63.7682    -2.6414 -1601068.790300 -5042051.910200 3554824.835300
  3   J1925+2106          3    -             -          
2016-03-07 16:54:34 INFO listobs   11  ea12 E08       25.0 m  -107.36.48.9 +33.53.55.1   407.8285  -206.0065    -3.2272 -1600801.926000 -5042219.366500 3554706.448200
  3    J1925+2106          4    -             -           
2016-03-07 16:54:34 INFO listobs   12  ea13 N07       25.0 m  -107.37.07.2 +33.54.12.9    -61.1037    344.2331    -4.6138 -1601155.635800 -5041783.843800 3555162.374100
  3    J1925+2106          5    -             -          
2016-03-07 16:54:34 INFO listobs   13  ea15 W06       25.0 m  -107.37.15.6 +33.53.56.-275.8288  -166.7451    -2.0590 -1601447.198000 -5041992.502500 3554739.687600
   3   J1925+2106          6    -             -           
2016-03-07 16:54:34 INFO listobs  14  ea16 W02       25.0 m  -107.37.07.5 +33.54.00.9    -67.9687    -26.5614    -2.7175 -1601225.255200 -5041980.383590 3554855.675000
  3   J1925+2106          7    -             -          
2016-03-07 16:54:34 INFO listobs   15  ea17 W07       25.0 m  -107.37.18.4 +33.53.54.8  -349.9877  -216.7509    -1.7975 -1601526.387300 -5041996.840100 3554698.327400
  3    J1925+2106          8    -             -           
2016-03-07 16:54:34 INFO listobs  16   ea18 N09       25.0 m  -107.37.07.8 +33.54.19.0    -77.4346    530.6273    -5.5859 -1601139.485100 -5041679.036800 3555316.533200
  3    J1925+2106          9    -             -          
2016-03-07 16:54:34 INFO listobs  17   ea19 W04       25.0 m  -107.37.10.8 +33.53.59.-152.8599    -83.8054    -2.4614 -1601315.893000 -5041985.320170 3554808.304600
   4   G55.7+3.4          2    -             -          
2016-03-07 16:54:34 INFO listobs  18   ea20 N05       25.0 m  -107.37.06.7 +33.54.08.0    -47.8454    192.6015    -3.8723 -1601168.786100 -5041869.054000 3555036.936000
  4    G55.7+3.4          3    -             -          
2016-03-07 16:54:34 INFO listobs  19  ea21 E01       25.0 m  -107.37.05.7 +33.53.59.2    -23.8638    -81.1510    -2.5851 -1601192.467800 -5042022.856800 3554810.438800
  4    G55.7+3.4          4    -             -          
2016-03-07 16:54:34 INFO listobs   20   ea22 N04       25.0 m  -107.37.06.5 +33.54.06.1    -42.6239    132.8436    -3.5494 -1601173.979400 -5041902.657700 3554987.517500
   4   G55.7+3.4          5     -             -          
2016-03-07 16:54:34 INFO listobs   21   ea23 E07       25.0 m  -107.36.52.4 +33.53.56.5    318.0509  -164.1850    -2.6957 -1600880.571400 -5042170.388000 3554741.457400
  4   G55.7+3.4          6    -             -           
2016-03-07 16:54:34 INFO listobs   22   ea24 W05       25.0 m  -107.37.13.0 +33.53.57.-210.0959  -122.3887    -2.2577 -1601377.009500 -5041988.665500 3554776.393400
  4    G55.7+3.4          7    -             -          
2016-03-07 16:54:34 INFO listobs   23   ea25 N02       25.0 m  -107.37.06.2 +33.54.03.5    -35.6245     53.1806    -3.1345 -1601180.861480 -5041947.453400 3554921.628700
   4    G55.7+3.4          8    -             -          
2016-03-07 16:54:34 INFO listobs   24   ea26 W03       25.0 m  -107.37.08.9 +33.54.00.-105.3447    -51.7177    -2.6037 -1601265.153600 -5041982.533050 3554834.858400
  4   G55.7+3.4          9    -             -          
2016-03-07 16:54:34 INFO listobs   25   ea27 E03       25.0 m  -107.37.02.8 +33.54.00.5     50.6641    -39.4835    -2.7273 -1601114.365500 -5042023.151800 3554844.944000
  5    0542+498=3C147      2    -             -           
2016-03-07 16:54:34 INFO listobs   26   ea28 N08       25.0 m  -107.37.07.5 +33.54.15.8    -68.9057    433.1889    -5.0602 -1601147.940400 -5041733.837000 3555235.956000
   5    0542+498=3C147      3     -             -          
2016-03-07 16:54:34 INFO listobs ##### End Task: listobs              #####
  5    0542+498=3C147      4     -             -          
2016-03-07 16:54:34 INFO listobs ##########################################
   5   0542+498=3C147      5    -             -           
  5   0542+498=3C147      6    -             -          
  5    0542+498=3C147      7    -             -          
   5   0542+498=3C147      8    -             -          
  5    0542+498=3C147      9     -             -          
  6    J0319+4130          2    -             -          
  6    J0319+4130          3    -             -          
   6   J0319+4130          4    -             -           
  6    J0319+4130          5    -             -           
  6   J0319+4130          6    -             -          
  6    J0319+4130          7    -             -           
  6    J0319+4130          8    -             -          
   6   J0319+4130          9    -             -           
Antennas: 27:
  ID  Name Station  Diam.    Long.         Lat.               Offset from array center (m)                ITRF Geocentric coordinates (m)       
                                                                    East        North    Elevation              x              y              z
  0    ea01  W09      25.0 m  -107.37.25.+33.53.51.0      -521.9416    -332.7766      -1.2001 -1601710.017000 -5042006.925200 3554602.355600
   1    ea02 E02       25.0 m  -107.37.04.4 +33.54.01.1         9.8240      -20.4293      -2.7806 -1601150.060300 -5042000.619800 3554860.729400
   2    ea03 E09       25.0 m  -107.36.45.1 +33.53.53.6        506.0564    -251.8670      -3.5825 -1600715.950800 -5042273.187000 3554668.184500
   3    ea04 W01       25.0 m  -107.37.05.9 +33.54.00.5        -27.3562      -41.3030      -2.7418 -1601189.030140 -5042000.493300 3554843.425700
  4    ea05 W08       25.0 m  -107.37.21.6 +33.53.53.0      -432.1167    -272.1478      -1.5054 -1601614.091000 -5042001.652900 3554652.509300
   5    ea06 N06       25.0 m  -107.37.06.9 +33.54.10.3        -54.0649      263.8778      -4.2273 -1601162.591000 -5041828.999000 3555095.896400
   6    ea07 E05       25.0 m  -107.36.58.4 +33.53.58.8        164.9788      -92.8032      -2.5268 -1601014.462000 -5042086.252000 3554800.799800
   7    ea08 N01       25.0 m  -107.37.06.0 +33.54.01.8        -30.8810      -1.4664      -2.8597 -1601185.634945 -5041978.156586 3554876.424700
   8    ea09 E06       25.0 m  -107.36.55.6 +33.53.57.7        236.9058    -126.3369      -2.4443 -1600951.588000 -5042125.911000 3554773.012300
  9    ea10 N03       25.0 m  -107.37.06.3 +33.54.04.8        -39.0773      93.0192      -3.3330 -1601177.376760 -5041925.073200 3554954.584100
   10   ea11 E04       25.0 m  -107.37.00.8 +33.53.59.7        102.8054      -63.7682      -2.6414 -1601068.790300 -5042051.910200 3554824.835300
   11   ea12 E08       25.0 m  -107.36.48.9 +33.53.55.1        407.8285    -206.0065      -3.2272 -1600801.926000 -5042219.366500 3554706.448200
   12   ea13 N07       25.0 m  -107.37.07.2 +33.54.12.9        -61.1037      344.2331      -4.6138 -1601155.635800 -5041783.843800 3555162.374100
   13   ea15 W06       25.0 m  -107.37.15.6 +33.53.56.4      -275.8288     -166.7451      -2.0590 -1601447.198000 -5041992.502500 3554739.687600
   14   ea16 W02       25.0 m  -107.37.07.5 +33.54.00.9        -67.9687      -26.5614      -2.7175 -1601225.255200 -5041980.383590 3554855.675000
   15   ea17 W07       25.0 m  -107.37.18.4 +33.53.54.8      -349.9877     -216.7509      -1.7975 -1601526.387300 -5041996.840100 3554698.327400
   16   ea18 N09       25.0 m  -107.37.07.8 +33.54.19.0        -77.4346      530.6273      -5.5859 -1601139.485100 -5041679.036800 3555316.533200
  17  ea19  W04      25.0 m  -107.37.10.8  +33.53.59.1      -152.8599      -83.8054      -2.4614 -1601315.893000 -5041985.320170  3554808.304600
  18  ea20  N05      25.0 m  -107.37.06.7  +33.54.08.0        -47.8454      192.6015      -3.8723 -1601168.786100 -5041869.054000  3555036.936000
  19  ea21  E01      25.0 m  -107.37.05.7  +33.53.59.2        -23.8638      -81.1510      -2.5851 -1601192.467800 -5042022.856800  3554810.438800
  20  ea22  N04      25.0 m  -107.37.06.5  +33.54.06.1        -42.6239      132.8436      -3.5494 -1601173.979400 -5041902.657700  3554987.517500
  21  ea23  E07      25.0 m  -107.36.52.4  +33.53.56.5        318.0509    -164.1850      -2.6957 -1600880.571400 -5042170.388000  3554741.457400
  22  ea24  W05      25.0 m  -107.37.13.0  +33.53.57.8      -210.0959    -122.3887      -2.2577 -1601377.009500 -5041988.665500  3554776.393400
  23  ea25  N02      25.0 m  -107.37.06.2  +33.54.03.5        -35.6245      53.1806      -3.1345 -1601180.861480 -5041947.453400  3554921.628700
  24  ea26  W03      25.0 m  -107.37.08.9  +33.54.00.1      -105.3447      -51.7177      -2.6037 -1601265.153600 -5041982.533050  3554834.858400
  25  ea27  E03      25.0 m  -107.37.02.8  +33.54.00.5        50.6641      -39.4835      -2.7273 -1601114.365500 -5042023.151800  3554844.944000
  26  ea28  N08      25.0 m  -107.37.07.5  +33.54.15.8        -68.9057      433.1889      -5.0602 -1601147.940400 -5041733.837000  3555235.956000
##### End Task: listobs             #####
##########################################
</pre>
</pre>


We can see that there are numerous sources in this observation:
* J1925+2106,     field ID 0: Phase Calibrator;
 
* G55.7+3.4,     field ID 1: The Supernova Remnant;
* 1331+305=3C286, field ID 0: Amplitude Calibrator/Dummy Scans;
* 0542+498=3C147, field ID 2: Amplitude/Bandpass Calibrator
* J1331+3030, field ID 1: Amplitude/Bandpass Calibrator;
* J1407+2827, field ID 2: Phase Calibrator;
* J1925+2106, field ID 3: Phase Calibrator;
* G55.7+3.4, field ID 4: The Supernova Remnant;
* 0542+498=3C147, field ID 5: Amplitude/Bandpass Calibrator
* J0319+4130, field ID 6: Amplitude/Bandpass Calibrator


We can also see that these sources have associated "scan intents", which indicate their function in the observation.  Note that you can select sources based on their intents in certain CASA tasks.  The various scan intents in this data set are:
We can also see that these sources have associated "scan intents", which indicate their function in the observation.  Note that you can select sources based on their intents in certain CASA tasks.  The various scan intents in this data set are:
Line 256: Line 206:
<source lang="python">
<source lang="python">
# In CASA
# In CASA
plotants(vis='SN_G55_10s.ms', figfile='SN_G55_10s.plotants.png')
plotants(vis='SNR_G55_10s.ms', figfile='SNR_G55_10s.plotants.png')
</source>
</source>


Line 267: Line 217:
<source lang="python">
<source lang="python">
# In CASA
# In CASA
plotms(vis='SN_G55_10s.ms', scan='30,75,120,165,190,235,303', antenna='ea24', xaxis='freq',  
plotms(vis='SNR_G55_10s.ms', scan='30,75,120,165,190,235,303', antenna='ea24', xaxis='freq',  
       yaxis='amp', coloraxis='spw', iteraxis='scan', correlation='RR,LL')
       yaxis='amp', coloraxis='spw', iteraxis='scan', correlation='RR,LL')
</source>
</source>
Line 278: Line 228:
* correlation='RR,LL': We just want to display the right and left circular polarizations, without the cross-hand terms.  
* correlation='RR,LL': We just want to display the right and left circular polarizations, without the cross-hand terms.  


Flipping through the scans, we can see that there is significant time and frequency variable RFI present in the observation, as seen by the large spikes in amplitude. In particular, we can see that two spectral windows are quite badly affected. To determine which spectral windows they are, click on the "Mark Regions" tool at the bottom of the {{plotms}} GUI (the open box with a green "plus" sign). Use the mouse to select a few of the highest-amplitude points in each of the spectral windows. Click on the "Locate" button (magnifying glass sign). Information about the selected areas should now display in the logger window:
Flipping through to scan 190, we can see that there is significant time and frequency variable RFI present in the observation, as seen by the large spikes in amplitude. In particular, we can see that several spectral windows are quite badly affected. To determine which spectral windows they are, click on the "Mark Regions" tool at the bottom of the {{plotms}} GUI (the open box with a green "plus" sign). Use the mouse to select a few of the highest-amplitude points in each of the spectral windows. Click on the "Locate" button (magnifying glass sign). Information about the selected areas should now display in the logger window:


<pre>
<pre>
Frequency in [1.22235 1.26797] or [1.58473 1.62123], Amp in [21.7034 24.7039] or [59.9094 62.1097]:
Frequency in [1.30662 1.31407] or [1.32377 1.33569] or [1.67866 1.69581], Amp in [0.16871 0.217097] or [0.153226 0.186613] or [0.172581 0.235968]:
Scan=30 Field=G55.7+3.4[4] Time=2010/08/23/01:20:37.0 BL=ea03@E09 & ea24@W05[2&22] Spw=3 Chan=59 Freq=1.246 Corr=RR X=1.246 Y=22.5607  (30326/9/374)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:19:58.0 BL=ea16@W02 & ea24@W05[14&22] Spw=0 Chan=27 Freq=1.31  Corr=RR X=1.31  Y=0.17187  (1718/144/1718)
Scan=30 Field=G55.7+3.4[4] Time=2010/08/23/01:20:47.0 BL=ea03@E09 & ea24@W05[2&22] Spw=3 Chan=59 Freq=1.246 Corr=RR X=1.246 Y=22.6442 (33654/10/374)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:19:58.0 BL=ea19@W04 & ea24@W05[17&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.178607 (1975/144/1975)
Scan=30 Field=G55.7+3.4[4] Time=2010/08/23/01:20:47.0 BL=ea12@E08 & ea24@W05[11&22] Spw=3 Chan=59 Freq=1.246 Corr=RR X=1.246 Y=22.4441  (34806/10/1526)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:19:58.0 BL=ea22@N04 & ea24@W05[20&22] Spw=0 Chan=37 Freq=1.33  Corr=RR X=1.33  Y=0.18105  (2250/144/2250)
Scan=30 Field=G55.7+3.4[4] Time=2010/08/23/01:20:57.0 BL=ea03@E09 & ea24@W05[2&22] Spw=3 Chan=59 Freq=1.246 Corr=RR X=1.246 Y=23.032   (36982/11/374)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:08.0 BL=ea19@W04 & ea24@W05[17&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.21228   (1975/145/1975)
Scan=30 Field=G55.7+3.4[4] Time=2010/08/23/01:20:57.0 BL=ea12@E08 & ea24@W05[11&22] Spw=3 Chan=59 Freq=1.246 Corr=RR X=1.246 Y=23.5243 (38134/11/1526)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:08.0 BL=ea21@E01 & ea24@W05[19&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.181632 (2103/145/2103)
Scan=30 Field=G55.7+3.4[4] Time=2010/08/23/01:21:07.0 BL=ea03@E09 & ea24@W05[2&22] Spw=3 Chan=59 Freq=1.246 Corr=RR X=1.246 Y=23.6116 (40310/12/374)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:08.0 BL=ea22@N04 & ea24@W05[20&22] Spw=0 Chan=37 Freq=1.33  Corr=RR X=1.33  Y=0.167068 (2250/145/2250)
Scan=30 Field=G55.7+3.4[4] Time=2010/08/23/01:21:07.0 BL=ea12@E08 & ea24@W05[11&22] Spw=3 Chan=59 Freq=1.246 Corr=RR X=1.246 Y=23.4432 (41462/12/1526)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:28.0 BL=ea19@W04 & ea24@W05[17&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.216252 (1818323722/147/1975)
Scan=30 Field=G55.7+3.4[4] Time=2010/08/23/01:21:17.0 BL=ea03@E09 & ea24@W05[2&22] Spw=3 Chan=59 Freq=1.246 Corr=RR X=1.246 Y=23.1712 (43638/13/374)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:28.0 BL=ea22@N04 & ea24@W05[20&22] Spw=0 Chan=37 Freq=1.33  Corr=RR X=1.33  Y=0.182341 (1818323997/147/2250)
Scan=30 Field=G55.7+3.4[4] Time=2010/08/23/01:21:17.0 BL=ea12@E08 & ea24@W05[11&22] Spw=3 Chan=59 Freq=1.246 Corr=RR X=1.246 Y=21.7265 (44790/13/1526)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:38.0 BL=ea07@E05 & ea24@W05[6&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.175032 (1866691864/148/695)
Scan=30 Field=G55.7+3.4[4] Time=2010/08/23/01:21:17.0 BL=ea19@W04 & ea24@W05[17&22] Spw=3 Chan=59 Freq=1.246 Corr=RR X=1.246 Y=22.3464 (45558/13/2294)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:38.0 BL=ea09@E06 & ea24@W05[8&22] Spw=0 Chan=27 Freq=1.31  Corr=RR X=1.31  Y=0.176728 (1866692119/148/950)
Scan=30 Field=G55.7+3.4[4] Time=2010/08/23/01:21:47.0 BL=ea03@E09 & ea24@W05[2&22] Spw=3 Chan=59 Freq=1.246 Corr=RR X=1.246 Y=22.3503 (53622/16/374)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:38.0 BL=ea16@W02 & ea24@W05[14&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.170435 (1866692888/148/1719)
Scan=30 Field=G55.7+3.4[4] Time=2010/08/23/01:21:57.0 BL=ea03@E09 & ea24@W05[2&22] Spw=3 Chan=59 Freq=1.246 Corr=RR X=1.246 Y=23.7536 (56950/17/374)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:38.0 BL=ea19@W04 & ea24@W05[17&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.210123 (1866693144/148/1975)
Scan=30 Field=G55.7+3.4[4] Time=2010/08/23/01:21:07.0 BL=ea12@E08 & ea24@W05[11&22] Spw=6 Chan=41 Freq=1.602 Corr=RR X=1.602 Y=61.9097 (131282/39/1490)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:38.0 BL=ea21@E01 & ea24@W05[19&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.185065 (1866693272/148/2103)
Scan=30 Field=G55.7+3.4[4] Time=2010/08/23/01:21:17.0 BL=ea12@E08 & ea24@W05[11&22] Spw=6 Chan=41 Freq=1.602 Corr=RR X=1.602 Y=61.1769 (134610/40/1490)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:38.0 BL=ea22@N04 & ea24@W05[20&22] Spw=0 Chan=37 Freq=1.33  Corr=RR X=1.33  Y=0.158359 (1866693419/148/2250)
Scan=30 Field=G55.7+3.4[4] Time=2010/08/23/01:21:27.0 BL=ea12@E08 & ea24@W05[11&22] Spw=6 Chan=41 Freq=1.602 Corr=RR X=1.602 Y=60.1834 (137938/41/1490)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:38.0 BL=ea24@W05 & ea27@E03[22&25] Spw=0 Chan=27 Freq=1.31  Corr=RR X=1.31  Y=0.190659 (1866693783/148/2614)
Found 15 points (15 unflagged) among 239616 in 0.01s.
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:48.0 BL=ea21@E01 & ea24@W05[19&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.197052  (1852669347/149/2103)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:48.0 BL=ea22@N04 & ea24@W05[20&22] Spw=0 Chan=37 Freq=1.33  Corr=RR X=1.33  Y=0.183905  (1852669494/149/2250)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:48.0 BL=ea24@W05 & ea27@E03[22&25] Spw=0 Chan=27 Freq=1.31  Corr=RR X=1.31  Y=0.170542  (1852669858/149/2614)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:58.0 BL=ea21@E01 & ea24@W05[19&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.179017  (1668509051/150/2103)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:58.0 BL=ea22@N04 & ea24@W05[20&22] Spw=0 Chan=37 Freq=1.33  Corr=RR X=1.33  Y=0.177841  (1668509198/150/2250)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:21:08.0 BL=ea21@E01 & ea24@W05[19&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.193158  (1866681459/151/2103)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:19:58.0 BL=ea19@W04 & ea24@W05[17&22] Spw=2 Chan=19 Freq=1.686 Corr=RR X=1.686 Y=0.209811  (4844192/162/1958)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:19:58.0 BL=ea19@W04 & ea24@W05[17&22] Spw=2 Chan=19 Freq=1.686 Corr=LL X=1.686 Y=0.224424  (4844193/162/1959)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:08.0 BL=ea19@W04 & ea24@W05[17&22] Spw=2 Chan=19 Freq=1.686 Corr=RR X=1.686 Y=0.231918  (1374179750/163/1958)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:08.0 BL=ea19@W04 & ea24@W05[17&22] Spw=2 Chan=19 Freq=1.686 Corr=LL X=1.686 Y=0.209708  (1374179751/163/1959)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:18.0 BL=ea08@N01 & ea24@W05[7&22]  Spw=2 Chan=19 Freq=1.686 Corr=RR X=1.686 Y=0.17744  (2898499/164/806)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:18.0 BL=ea10@N03 & ea24@W05[9&22]  Spw=2 Chan=19 Freq=1.686 Corr=LL X=1.686 Y=0.177235  (2898756/164/1063)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:18.0 BL=ea19@W04 & ea24@W05[17&22] Spw=2 Chan=19 Freq=1.686 Corr=RR X=1.686 Y=0.230346  (2899651/164/1958)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:18.0 BL=ea19@W04 & ea24@W05[17&22] Spw=2 Chan=19 Freq=1.686 Corr=LL X=1.686 Y=0.199502  (2899652/164/1959)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:28.0 BL=ea08@N01 & ea24@W05[7&22]  Spw=2 Chan=19 Freq=1.686 Corr=RR X=1.686 Y=0.177315  (6083110/165/806)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:28.0 BL=ea10@N03 & ea24@W05[9&22]  Spw=2 Chan=19 Freq=1.686 Corr=LL X=1.686 Y=0.17881  (6083367/165/1063)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:28.0 BL=ea19@W04 & ea24@W05[17&22] Spw=2 Chan=19 Freq=1.686 Corr=RR X=1.686 Y=0.217573  (6084262/165/1958)
Found 45 points (45 unflagged) among 101376 in 0s.
</pre>
</pre>


We can see that Spw 3 and 6 are the worst affected by RFI.
[[Image:Lband_RFI.png|200px|thumb|right|Side-by-side plots of RFI within a portion of L-Band and spectral window 0 of the observation.]]


== A priori calibration and flagging ==
We can see that Spw 0 and 2, are the worst affected by RFI. Also, we get the corresponding frequency where the RFI is present, which looks to be 1.31 and 1.33GHz for spectral window 0, and 1.686GHz for spectral window 2. Visiting the VLA L-Band RFI [https://science.nrao.edu/facilities/vla/observing/RFI/L-Band website], we find that the 1310 and 1330 MHz 'birdies' are due to FAA ASR radars, and the one at 1686MHz is most likely due to a GOES weather satellite. We can compare the plots of the FAA ASR radar from the website, with that of spw 0, and see that the birdies (spikes) are practically identical and fall within the same frequencies.


Before we proceed with further processing, we should check the operator log for the observation to see if there were any issues noted during the run that need to be addressed. The observing log files can be found [http://www.vla.nrao.edu/cgi-bin/oplogs.cgi here]. We will change the start and stop dates to search for all logs created on August 23, 2010. Click on ''PDF'' next to ''AB1345'' and review the log.
== Priori Calibration and Flagging ==


The log has various information, including the start/end times for the observation, frequency bands used, weather, baseline information for recently moved antennas, and any outages or issues that may have occurred during the run. We can see that antenna ea07 may need position corrections, and several antennas are missing an L-Band receiver, including ea06, ea17, ea20, and ea26. We will work on applying position corrections and flagging the affected antennas from the MS.  
Normally, before we proceed with further processing, we should check the operator log for the observation to see if there were any issues noted during the run that need to be addressed. The observing log file for this observation can be found [http://www.vla.nrao.edu/operators/logs/2010/8/2010-08-23_0005_AB1345.pdf here].


=== Antenna position corrections ===
The log has various information, including the start/end times for the observation, frequency bands used, weather, baseline information for recently moved antennas, and any outages or issues that may have been encountered. We can see that antenna ea07 may need position corrections (calibration table SNR_G55_10s.pos will fix this), and several antennas are missing an L-Band receiver, including ea06, ea17, ea20, and ea26. We have already removed these antennas from our MS during the run of split2() and can continue with online flagging.


The observed visibilities are a function of (u,v), therefore correcting a known position error is important in creating images derived from the data. We will do this with the task {{gencal}}.
=== Online Flags ===
The gencal task will query the JVLA Baseline Corrections database to determine what baseline corrections to apply to the data set.  If you wish to double-check this by hand, refer to the [http://www.vla.nrao.edu/astro/archive/baselines/ EVLA/VLA Baseline Corrections] page.
 
<source lang="python">
# In CASA
gencal(vis='SN_G55_10s.ms', caltable='SN_G55_10s.pos', caltype='antpos')
</source>
 
As reported by the CASA logger, gencal found a position correction for antenna ea07 of (x, y, z) = (0.00870, 0.01370, 0.00000) and recorded this in our specified calibration table.
 
The position corrections can be applied later using the task {{gaincal}}.
 
=== Flagging non-operational antennas ===
 
In addition to updating the position for antenna ea07, we have to flag antennas ea06, ea17, ea20, and ea26, since these did not have working L-band receivers at the time of observation.  We do this with the task {{flagdata}}:
 
<source lang="python">
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='manual', antenna='ea06,ea17,ea20,ea26')
</source>
 
Note that the first thing flagdata does is create a backup flag file, in this case named "flagdata_1".  This flag file contains a copy of the flags present in the MS prior to the requested flagging operation, and can be found inside the SN_G55.ms.flagversions directory, along with any other backed up flag files. Keep in mind that these backup files may take up a fair amount of space, so it may be a good idea to set flagbackup=False, use flagdata to apply flags, and once you feel confident all priori flags have been applied, use {{flagmanager}} to create a backup.
 
=== Applying online flags ===


At the time of importing from the SDM-BDF raw data to a MS, we chose to process the online flags from the Flags.xml file to the FLAG_CMD sub-table within the MS. We also created a txt document which includes a list of online flags.  
At the time of importing from the SDM-BDF raw data to a MS, we chose to process the online flags from the Flags.xml file to the FLAG_CMD sub-table within the MS. We also created a txt document which includes a list of online flags.  


The Flags.xml file holds information of flags created during the observation, such as subreflector issues, and antennas not being on source.  
The Flags.xml file holds information of flags created during the observation, such as subreflector issues, and antennas not being on source.  
 
We will now want to apply these online flags to the data, but first, let's create a plot of the flags we are about to apply to get an idea of what will be flagged.
We will now want to apply these online flags to the data, but first, let's create a plot of the flags we are about to apply.


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagcmd(vis='SN_G55_10s.ms', inpmode='table', reason='any', action='plot', plotfile='flaggingreason_vs_time.png')
flagcmd(vis='SNR_G55_10s.ms', inpmode='table', reason='any', action='plot', plotfile='flaggingreason_vs_time.png')
</source>
</source>


Line 361: Line 303:
<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagcmd(vis='SN_G55_10s.ms', inpmode='table', reason='any', action='apply', flagbackup=False)
flagcmd(vis='SNR_G55_10s.ms', inpmode='table', reason='any', action='apply', flagbackup=False)
</source>
</source>


The CASA logger should report the progress as the task applies these flags in chunks. Once it has finished, it will report on the percentage of data that has been flagged.  
The CASA logger should report the progress as the task applies these flags in chunks. Once it has finished, it will report on the percentage of data that has been flagged.  


=== Flagging shadowed antennas, zero-amplitude data, and quacking ===
=== Shadowed Antennas ===


Since this is the most compact EVLA configuration, there may be instances where one antenna blocks, or "shadows" another.  Therefore, we will run {{flagdata}} to remove these data (CASA Cookbook 3.4.2):
Since this is the most compact JVLA configuration, there may be instances where one antenna blocks, or "shadows" another.  Therefore, we will run {{flagdata}} to remove these data (CASA Cookbook 3.4.2):


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='shadow', tolerance=0.0, flagbackup=False)
flagdata(vis='SNR_G55_10s.ms', mode='shadow', tolerance=0.0, flagbackup=False)
</source>
</source>


In this particular observation, there does not appear to be much data affected by shadowing, as can be seen in the logger report. One reason why this may be the case, is the antennas were pointed at sources high in elevation. To show this, we can create a plot of elevation vs. time by using the {{plotms}} task.  
In this particular observation, there does not appear to be much data affected by shadowing, as can be seen in the logger report. One reason why this may be the case, is the antennas were pointed at sources high in elevation.  


<source lang="python">
=== Zero-Amplitude Data ===
# In CASA
plotms(vis='SN_G55_10s.ms', xaxis='time', yaxis='elevation', antenna='0&1;2&3', spw='*:31',
      coloraxis='field', title='Elevation vs. Time', plotfile='Elevation_vs_Time.png', showgui=False)
</source>
 
[[Image:Elevation_vs_Time.png|200px|thumb|right|Elevation vs Time]]
 
We can see from the plot that most of the antennas were pointed at or above 40 degrees in elevation. This helped reduce the amount of shadowing on the antennas during the run of this observation.


In addition to shadowing, there may be times during which the correlator writes out pure zero-valued data.  In order to remove this bad data, we run {{flagdata}} to remove any pure zeroes:
In addition to shadowing, there may be times during which the correlator writes out pure zero-valued data.  In order to remove this bad data, we run {{flagdata}} to remove any pure zeroes:
Line 391: Line 325:
<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='clip', clipzeros=True, flagbackup=False)  
flagdata(vis='SNR_G55_10s.ms', mode='clip', clipzeros=True, flagbackup=False)  
</source>
</source>


Inspecting the logger output which is generated by flagdata shows that there is a small quantity of zero-valued data (3.47%) present in this MS.
Inspecting the logger output which is generated by flagdata shows that there is a small quantity of zero-valued data (4.6%) present in this MS.


Now we will utilize the {{flagdata}} task one more time in order to run it in quaking mode.  
=== Quacking ===
Now we can utilize the {{flagdata}} task one more time in order to run it in quaking mode.


It's common for the array to "settle down" at the start of a scan. Quacking is used to remove data at scan boundaries, and it can apply the same edit to all scans for all baselines.  
It's common for the array to "settle down" at the start of a scan. Quacking is used to remove data at scan boundaries, and it can apply the same edit to all scans for all baselines. We will forego quacking for this data due to online-flagging having removed the bad data we would otherwise encounter when antennas are not on source. In addition, our science target and phase calibrator J1925+2106 are very close in the sky.  


<source lang="python">
To convince yourself, you can experiment creating a plot of frequency vs. time with {{plotms}} for a portion of the observation where the antennas move from the science target, to the phase calibrator. A good choice would be 01:34:00~01:50:27 (scan 39-49).
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='quack', quackinterval=5.0, quackmode='beg', flagbackup=False)
If we had decided to use the quacking mode, a call to flagdata() would look something like:<br />
</source>
''flagdata(vis='SN_G55_10s.ms', mode='quack', quackinterval=5.0, quackmode='beg', flagbackup=False)''


*quackmode='beg' : Data from the start of each scan will be flagged.
*quackmode='beg' : Data from the start of each scan will be flagged.
*quackinterval=5.0: Flag the first 5 seconds of every scan.  
*quackinterval=5.0: Flag the first 5 seconds of every scan.


=== Backup data with flagmanager ===
=== Backup Data - Flagmanager ===


Now that we've applied online flags, clipped zero amplitude data, removed shadowed data, and quacked, we will create a backup of the MS using {{flagmanager}}.  
Now that we've applied online flags, clipped zero amplitude data, and removed shadowed data, we will create a backup of the MS using {{flagmanager}}.  


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagmanager(vis='SN_G55_10s.ms', mode='save', versionname='after_priori_calflag')
flagmanager(vis='SNR_G55_10s.ms', mode='save', versionname='after_priori_flagging')
</source>
</source>


From here on forward, if we make a mistake, we can always revert back to this version of the MS by setting mode='restore' within flagmanager.
From here on forward, if we make a mistake, we can always revert back to this version of the MS by setting mode='restore', and providing the version name we want to restore back to.


== Automatic RFI excision ==
== Automatic RFI excision ==


=== Hanning-smoothing data ===
Now that we're done with priori flagging, we can move on to removing some of the RFI present with auto-flagging algorithms used within {{flagdata}}. We will employ two algorithms, {{tfcrop}} and {{rflag}}.


Prior to flagging any data which is affect by strong RFI, one should Hanning-smooth the data to remove Gibbs ringing.  This is done with the task {{hanningsmooth}}, which can either write a new, Hanning-smoothed MS or directly operate on the requested column of the input MS.  To conserve space, we will request the latter.  Note that if you wish to make your own "before" and "after" plots, you should make the first plot prior to running hanningsmooth, since you will be overwriting the non-Hanning-smoothed data in the process -- and this is not reversible (CASA Cookbook 4.7.3). 
=== TFcrop ===


<source lang="python">
Tfcrop is an algorithm that detects outliers in the 2D time-frequency plane, and can operate on un-calibrated data (non bandpass-corrected). Tfcrop will iterate through chunks of time, and undergo several steps in order to find and excise different types of RFI. (CASA Cookbook 3.4.2.7)
# In CASA
plotms(vis='SN_G55_10s.ms', scan='30', antenna='ea24', spw='2~4', xaxis='freq', yaxis='amp', coloraxis='spw',
      correlation='RR,LL', plotrange=[1.0,1.27,-0.1,5], plotfile='amp_v_freq.beforeHanning.png')


hanningsmooth(vis='SN_G55_10s.ms', datacolumn='data')
Step 1: Detect short-duration RFI spikes (narrow-band and broad-band). <br />
Step 2: Search for time-persistent RFI.<br />
Step 3: Search for time-persistent, narrow-band RFI. <br />
Step 4: Search for low-level wings of very strong RFI. <br />


plotms(vis='SN_G55_10s.ms', scan='30', antenna='ea24', spw='2~5', xaxis='freq', yaxis='amp', coloraxis='spw',
More details on the algorithm steps can be found on this [http://www.aoc.nrao.edu/~rurvashi/TFCrop/TFCropV1/node2.html#SECTION00023000000000000000 webpage]
      correlation='RR,LL', plotrange=[1.0,1.27,-0.1,5], plotfile='amp_v_freq.afterHanning.png')
</source>
 
[[Image:amp_v_freq.beforeHanning.png|200px|thumb|left|Before Hanning Smoothing]]
[[Image:amp_v_freq.afterHanning.png|200px|thumb|right|After Hanning Smoothing]]
 
Task {{hanningsmooth}} will take a few minutes to run.  Note that the 2nd {{plotms}} command above contains a trivial change in the spw selection (trivial because the 5th spw is outside of the specified plotrange).  This forces plotms to reload the plot since by default, plotms will not redraw a plot if the input parameters are unchanged.  In this case, since the data column was changed between calls to {{plotms}}, a redraw is necessary.  When using the GUI, you can simply check "force reload" in the bottom left corner of the side bar before clicking "Plot."
 
We can compare the Hanning-smoothed data with the raw data by plotting a subset of data to show the result of Hanning-smoothing (see plots to the left and right). As you can see, the smoothing has spread the single-channel RFI into three channels, but has also removed the effects of some of the worst RFI from a number of channels.  Overall, this will improve our ability to flag RFI from the data and retain as much good data as possible.
 
=== Using the phase calibration source for preliminary bandpass calibration ===
 
In order to get the best possible result from the automatic RFI excision, we will first apply bandpass calibration to the MS.  Since the RFI is time-variable, using the phase calibration source to make an average bandpass over the entire observation will mitigate the amount of RFI present in the calculated bandpass.  (For the final calibration, we will use the designated bandpass source 3C147; however, since this object was only observed in the last set of scans, it doesn't sample the time variability and would not provide a good average bandpass.)


Since there are likely to be gain variations over the course of the observation, we will run {{gaincal}} to solve for an initial set of antenna-based phases over a narrow range of channels.  These will be used to create the bandpass solutions.  While amplitude variations will have little effect on the bandpass solutions, it is important to solve for these phase variations with sufficient time resolution to prevent decorrelation when vector averaging the data in computing the bandpass solutions.
We will apply the auto-flagging tfcrop algorithm for each spectral window, one at a time. First, lets plot the corrected data for scan 190, with all spectral windows, so we can compare the data before and after tfcrop.
 
In order to choose a narrow range of channels for each spectral window which are relatively RFI-free over the course of the observation, we can look at the data with {{plotms}}.  Note that it's important to only solve for phase using a narrow channel range, since an antenna-specific delay will cause the phase to vary with respect to frequency over the spectral window, perhaps by a substantial amount.


<source lang="python">
<source lang="python">
# In CASA
# In CASA
plotms(vis='SN_G55_10s.ms', scan='30,75,120,165,190,235,303', antenna='ea24',  
plotms(vis='SNR_G55_10s.ms', scan='190', antenna='ea24', xaxis='freq', iteraxis='scan',
      xaxis='channel', yaxis='amp', iteraxis='spw', yselfscale=True, correlation='RR,LL')
      yaxis='amp', ydatacolumn='data', plotfile='amp_v_freq_before_tfcrop.png',
      correlation='RR,LL', coloraxis='spw', plotrange=[1.2,2,-0.01,0.25])
</source>
</source>


* yselfscale=True: sets the y-scaling to be for the currently displayed spectral window, since some spectral windows have much worse RFI and will skew the scale for others.
Following are a set of flagdata commands which have been found to work reasonably well with these data. Please take some time to play with the parameters and the plotting capabilities.  Since these runs set display='both' and action='calculate', the flags are displayed but not actually written to the MS.  This allows one to try different sets of parameters before actually applying the flags to the data.


Looking at these plots, we can choose appropriate channel ranges for each SPW:
Some representative plots are also displayed.  Each column displays an individual polarization product; since we're using all four polarizations, from left to right are RR, RL, LR, and LL. The first row shows the data with current flags applied, and the second includes the flags generated by flagdata. The x-axis is channel number (the spectral window ID is displayed in the top title) and the y-axis of the first two rows is all integrations included in a time "chunk", set by the ntime parameter. These are the data considered by the tfcrop algorithm during its flagging process, and changes in ntime will have some (relatively small) affect on what data are flagged.


<pre>
Each plot page displays data for a single baseline and time chunk.  The buttons at the bottom allow one to step through baseline (backward as well as forward), spw, scan, and field; "Stop Display" will continue the flagging operation without the GUI, and "Quit" aborts the run.
SPW 2: 10-13
SPW 3: 30-33
SPW 4: 32-35
SPW 5: 30-33
SPW 6: 35-38
SPW 7: 30-33
SPW 8: 30-33
SPW 9: 46-49
</pre>


Using these channel ranges, we run {{gaincal}} to calculate phase-only solutions that will be used as input during our initial bandpass calibration.  Remember - the calibration tables we are creating now are so that we can use automatic RFI flagging algorithms.  Our final calibration tables will be generated later, after automated flagging.  Here are the inputs for our initial pre-bandpass phase calibration:
''' spw 0 '''


<source lang="python">
<source lang="python">
# In CASA
# In CASA
gaincal(vis='SN_G55_10s.ms', caltable='SN_G55_10s.initPh', field='J1925+2106', solint='int',
flagdata(vis='SNR_G55_10s.ms', mode='tfcrop', spw='0',  
        spw='2:10~13,3;5;7~8:30~33,4:32~35,6:35~38,9:46~49', refant='ea24', minblperant=3,
        datacolumn='data', action='calculate',  
        minsnr=3.0, calmode='p', gaintable='SN_G55_10s.pos')
        display='both', flagbackup=False)
</source>
</source>


* caltable='SN_G55_10s.initPh': this is the output calibration table that will be written.
As we iterate through the different scans, we can see the flagging we can apply, represented by the blue areas. Let's now apply these flags by changing the action parameter.
* field='J1925+2106': this is the phase calibrator we will use to calibrate the phase.
* solint='int': we request a solution for each 10-second integration.
* spw='2:10~13,3;5;7~8:30~33,4:32~35,6:35~38,9:46~49': note the syntax of this selection: a ":" is used to separate the SPW from channel selection, ";" is used to separate within this selection, and "~" is used to indicate an inclusive range. 
* refant='ea24': we have chosen ea24 as the reference antenna after inspecting the antenna position diagram (see above).  It is relatively close to, but not directly in, the center of the array, which could be important in D-configuration, since you don't want the reference antenna to have a high probability of being shadowed by nearby antennas.
* minblperant=3: the minimum number of baselines which must be present to attempt a phase solution.
* minsnr=3.0: the minimum signal-to-noise a solution must have to be considered acceptable.  Note that solutions which fail this test will cause these data to be flagged downstream of this calibration step.
* calmode='p': perform phase-only solutions.
* gaintable='SN_G55_10s.pos': use the antenna position correction for ea07 that we created earlier.
 
Note that a number of solutions do not pass the requirements of the minimum 3 baselines (generating the terminal message "Insufficient unflagged antennas to proceed with this solve.") or minimum signal-to-noise ratio (outputting "n of x solutions rejected due to SNR < 3 ...").  A particularly large number of solutions are rejected in SPW 6, where the RFI is most severe.
 
[[Image:plotcal_ea09_GainPh_v_Time.png|200px|thumb|right|Phases for antenna ea09]]
[[Image:plotcal_spw6_GainPh_v_Time.png|200px|thumb|right|Phases in SPW 6]]
 
We can inspect the resulting calibration table with {{plotcal}}:


<source lang="python">
<source lang="python">
# In CASA
# In CASA
plotcal(caltable='SN_G55_10s.initPh', xaxis='time', yaxis='phase',
flagdata(vis='SNR_G55_10s.ms', mode='tfcrop', spw='0',  
        iteration='antenna', spw='2', plotrange=[-1,-1,-180,180])
        datacolumn='data', action='apply',  
        display='', flagbackup=False)
</source>
</source>


We may also iterate over spectral window for a subset of antennas:
The logger will report that a little over 41% of the table selection has been flagged. We will move on to spectral window 1.
 
''' spw 1 '''


<source lang="python">
<source lang="python">
# In CASA
# In CASA
plotcal(caltable='SN_G55_10s.initPh', xaxis='time', yaxis='phase',
flagdata(vis='SNR_G55_10s.ms', mode='tfcrop', spw='1',  
        iteration='spw', antenna='ea01,ea05,ea24', plotrange=[-1,-1,-180,180])
        datacolumn='data', action='calculate',  
</source>
        display='both', flagbackup=False)


Clearly, the phases are affected by RFI in some places, especially in SPW 6.
flagdata(vis='SNR_G55_10s.ms', mode='tfcrop', spw='1',  
 
         datacolumn='data', action='apply',  
Using this phase information, we create time-averaged bandpass solutions for the phase calibration source:
         display='', flagbackup=False)
 
<source lang="python">
# In CASA
bandpass(vis='SN_G55_10s.ms', caltable='SN_G55_10s.initBP', field='J1925+2106', solint='inf', combine='scan',  
         refant='ea24', minblperant=3, minsnr=10.0, gaintable=['SN_G55_10s.pos', 'SN_G55_10s.initPh'],
         interp=['', 'nearest'], solnorm=False)
</source>
</source>


* solint='inf', combine='scan': the solution interval of 'inf' will automatically break by scans; this requests that the solution intervals be combined over scans, so that we will get one solution per antenna.
The logger will report that almost 28.5% of the table selection has been flagged. This makes sense since this spectral window didn't show much of the RFI present in spectral window 0. Let us now run tfcrop on the two remaining spectral windows, 2 and 3.  
* gaintable=['SN_G55_10s.pos', 'SN_G55_10s.initPh']: we will pre-apply both the antenna position corrections as well as the initial phase solutions.
* interp=[<nowiki>''</nowiki>, 'nearest']: by default, {{gaincal}} will use linear interpolation for pre-applied calibration. However, we want the <i>nearest</i> phase solution to be used for a given time.
 
Again, we can see that a number of solutions have been rejected by our choices of <tt>minblperant</tt> and <tt>minsnr</tt>.


[[Image:plotcal_GainAmp_v_Frequency.png|200px|thumb|right|Bandpasses for antennas ea10 - ea19]]
[[Image:corramp_vs_freq_before_after_tfcrop.gif|200px|thumb|right|Plots of corrected data before and after tfcrop.]]
[[Image:plotcal_amp_vs_freq_spw.png|200px|thumb|right|Gain Amp vs. Freq for all spectral windows]]


We may plot the bandpasses with plotcal; first looking at the amplitudes:
''' spw 2 & 3 '''


<source lang="python">
<source lang="python">
# In CASA
# In CASA
plotcal(caltable='SN_G55_10s.initBP', xaxis='freq', yaxis='amp',
        iteration='antenna', subplot=331)
</source>


* subplot=331: displays 3x3 plots per screen
flagdata(vis='SNR_G55_10s.ms', mode='tfcrop', spw='2',
        datacolumn='data', action='apply',
        display='', flagbackup=False)


Now lets iterate through spw. This will give us a better idea of where RFI is most present.
flagdata(vis='SNR_G55_10s.ms', mode='tfcrop', spw='3',  
 
        datacolumn='data', action='apply',  
<source lang="python">
        display='', flagbackup=False)
# In CASA
plotcal(caltable='SN_G55_10s.initBP', xaxis='freq', yaxis='amp',
        iteration='spw', subplot=331)
</source>
</source>


Also, we can look at the phase solutions:
We can now use {{plotms}} to review the effects of using tfcrop and compare the image to the one created before applying tfcrop. We can see great improvements, especially for spectral window 0 and 2, which had some of the worst RFI.


<source lang="python">
<source lang="python">
# In CASA
# In CASA
plotcal(caltable='SN_G55_10s.initBP', xaxis='freq', yaxis='phase',
plotms(vis='SNR_G55_10s.ms', scan='190', antenna='ea24', xaxis='freq', iteraxis='scan',
        iteration='antenna', subplot=331)
      yaxis='amp', ydatacolumn='data', plotfile='amp_v_freq_after_tfcrop.png'
      correlation='RR,LL', coloraxis='spw', plotrange=[1.2,2,-0.01,0.25])
</source>
</source>


We can see that SPW 6 is virtually wiped-out by RFI; furthermore, there are channels in SPW 3 that are consistently badly affected. Prior to running any automatic flagging, we will flag these manually. In addition, we will flag the first 9 channels of SPW 2, since this is affected by an issue which causes the noise to be substantially higher. Also, we will want to flag spw's 0 and 1, since they only cover scans 1 and 2 for 3C286, which we won't be using as a calibrator.  
We can now calculate the amount of flagged data so far, in our Measurement Set.  


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagdata(vis='SN_G55_10s.ms', spw='0,1,2:0~8,3:41~63,6')
flagInfo = flagdata(vis='SNR_G55_10s.ms', mode='summary')
</source>
 
print("\n %2.1f%% of G55.7+3.4, %2.1f%% of 3C147, and %2.1f%% of J1925+2106 are flagged. \n" % (100.0 * flagInfo['field']['G55.7+3.4']['flagged'] / flagInfo['field']['G55.7+3.4']['total'], 100.0 * flagInfo['field']['0542+498=3C147']['flagged'] / flagInfo['field']['0542+498=3C147']['total'], 100.0 * flagInfo['field']['J1925+2106']['flagged'] / flagInfo['field']['J1925+2106']['total']))


Note that this has created a backup flag file called "flagdata_2". Now we apply the antenna position corrections and the bandpass calibration table to the data:
print("Spectral windows are flagged as follows:")


<source lang="python">
for spw in range(0,4):
# In CASA
    print("SPW %s: %2.1f%%" % (spw, 100.0 * flagInfo['spw'][str(spw)]['flagged'] / flagInfo['spw'][str(spw)]['total']))
applycal(vis='SN_G55_10s.ms', gaintable=['SN_G55_10s.pos', 'SN_G55_10s.initBP'], calwt=False)
</source>
</source>


This operation will flag data that correspond to flagged solutions, so {{applycal}} makes a backup version of the flags prior to operating on the data. Note that running {{applycal}} might take a little while.
The results indicate we have flagged almost 13% of G55.7+3.4. We can now move on to the other auto-flagging algorithm, rflag.  


To see the corrected data, we can plot the data as we did before, choosing ydatacolumn='corrected' this time:
=== RFlag ===


[[Image:corramp_vs_freq_scan30_applycal.png|200px|thumb|right|Spectral window plot for Scan 30 ]]
In order to get the best possible result from the automatic RFI excision with {{rflag}}, we will first apply bandpass calibration to the MS. Since the RFI is time-variable, using the phase calibration source to make an average bandpass over the entire observation will mitigate the amount of RFI present in the calculated bandpass.  (For the final calibration, we will use the designated bandpass source 3C147; however, since this object was only observed in the last set of scans, it doesn't sample the time variability and would not provide a good average bandpass.)


<source lang="python">
Since there are likely to be gain variations over the course of the observation, we will run {{gaincal}} to solve for an initial set of antenna-based phases over a narrow range of channels.  These will be used to create the bandpass solutions.  While amplitude variations will have little effect on the bandpass solutions, it is important to solve for these phase variations with sufficient time resolution to prevent decorrelation when vector averaging the data in computing the bandpass solutions.
# In CASA
plotms(vis='SN_G55_10s.ms', scan='30,75,120,165,190,235,303',
      antenna='ea24', xaxis='freq', yaxis='amp', coloraxis='spw',
      iteraxis='scan', ydatacolumn='corrected')
</source>


Note that some of the worst RFI is no longer there, and that the amplitude scale has changed, since the bandpass solutions include amplitude scaling. SPW 6 has been completely flagged, and we can see the flagged portion in SPW 3. Scrolling through the other scans, we can see there is still RFI present. We will now continue the process of RFI excision with the use of auto flagging algorithms.
In order to choose a narrow range of channels for each spectral window which are relatively RFI-free over the course of the observation, we can look at the data with {{plotms}}. Note that it's important to only solve for phase using a narrow channel range, since an antenna-specific delay will cause the phase to vary with respect to frequency over the spectral window, perhaps by a substantial amount.
 
=== Automatic flagging ===
 
Now that we have bandpass-corrected data with some of the worst RFI flagged out, we will run flagdata in [http://casa.nrao.edu/stable/docs/UserMan/UserMansu162.html rflag] mode (CASA Cookbook 3.4.2.8). Note that there are many parameters which may be modified:


<source lang="python">
<source lang="python">
# In CASA
# In CASA
default flagdata
plotms(vis='SNR_G55_10s.ms', scan='30,75,120,165,190,235,303', antenna='ea24',
mode='rflag'
      xaxis='channel', yaxis='amp', iteraxis='spw', yselfscale=True, correlation='RR,LL')
inp
</source>
</source>


<pre>
* yselfscale=True: sets the y-scaling to be for the currently displayed spectral window, since some spectral windows have much worse RFI and will skew the scale for others.
#  flagdata :: All-purpose flagging task based on data-selections and flagging modes/algorithms
vis                =        ''        #  Name of MS file to flag
mode                =    'rflag'        #  Flagging mode
                                        #  (list/manual/clip/shadow/quack/elevation/tfcrop/rflag/extend/unflag/summary)
    field          =        ''        #  Field names or field index numbers: '' ==> all, field='0~2,3C286'
    spw            =        ''        #  Spectral-window/frequency/channel: '' ==> all, spw='0:17~19'
    antenna        =        ''        #  Antenna/baselines: '' ==> all, antenna ='3,VA04'
    timerange      =        ''        #  Time range: '' ==> all,timerange='09:14:0~09:54:0'
    correlation    =        ''        #  Correlation: '' ==> all, correlation='XX,YY'
    scan          =        ''        #  Scan numbers: '' ==> all
    intent        =        ''        #  Observation intent: '' ==> all, intent='CAL*POINT*'
    array          =         ''        #  (Sub)array numbers: '' ==> all
    uvrange        =        ''        #  UV range: '' ==> all; uvrange ='0~100klambda', default units=meters
    observation    =        ''        #  Observation ID: '' ==> all
    feed          =        ''        #  Multi-feed numbers: Not yet implemented
    ntime          =    'scan'        #  Time-range to use for each chunk (in seconds or minutes)
    combinescans  =      False        #  Accumulate data across scans.
    datacolumn    =    'DATA'        #  Data column on which to operate (data,corrected,model,residual)
    winsize        =          3        #  Number of timesteps in the sliding time window [aips:fparm(1)]
    timedev        =        ''        #  Time-series noise estimate [aips:noise]
    freqdev        =        ''        #  Spectral noise estimate [aips:scutoff]
    timedevscale  =        5.0        #  Threshold scaling for timedev [aips:fparm(9)]
    freqdevscale  =        5.0        #  Threshold scaling for freqdev [aips:fparm(10)]
    spectralmax    =  1000000.0        #  Flag whole spectrum if freqdev is greater than spectralmax [aips:fparm(6)]
    spectralmin    =        0.0        #  Flag whole spectrum if freqdev is less than spectralmin [aips:fparm(5)]


action              =    'apply'        #  Action to perform in MS and/or in inpfile (none/apply/calculate)
Looking at these plots, we can choose appropriate channel ranges for each SPW:
    display        =        ''        #  Display data and/or end-of-MS reports at runtime (data/report/both).
    flagbackup    =      True        #  Back up the state of flags before the run
 
savepars            =      False        #  Save the current parameters to the FLAG_CMD table or to a file


<pre>
SPW 0: 11-14
SPW 1: 30-33
SPW 2: 32-35
SPW 3: 30-33
</pre>
</pre>


Additional information on the algorithm used in RFlag, as well as the other available automatic flagging algorithm in {{flagdata}} ("TFCrop"), can be found [http://www.aoc.nrao.edu/~rurvashi/FlaggerDocs/node5.html on this webpage] (sections 2.1.6 and 2.1.7).
Using these channel ranges, we run {{gaincal}} to calculate phase-only solutions that will be used as input during our initial bandpass calibrationRemember - the calibration tables we are creating now are so that we can use an automatic RFI flagging algorithm. Our final calibration tables will be generated later, after automated flagging. Here are the inputs for our initial pre-bandpass phase calibration:
 
Following are a set of flagdata commands which have been found to work reasonably well with these data.  Please take some time to play with the parameters and the plotting capabilities.  Since these runs set display='both' and action='calculate', the flags are displayed but not actually written to the MSThis allows one to try different sets of parameters before actually applying the flags to the data.
 
Some representative plots are also displayed.  Each column displays an individual polarization product; since we're using all four, from left to right are RR, RL, LR, and LL.  The first row shows the data with current flags applied, and the second includes the flags generated by flagdata.  The x-axis is channel number (the spectral window ID is displayed in the top title) and the y-axis of the first two rows is all integrations included in a time "chunk", set by the ntime parameter.  These are the data considered by the RFlag algorithm during its flagging process, and changes in ntime will have some (relatively small) affect on what data are flagged.
 
Each plot page displays data for a single baseline and time chunk.  The buttons at the bottom allow one to step through baseline (backward as well as forward), SPW, scan, and field; "Stop Display" will continue the flagging operation without the GUI, and "Quit" aborts the run.
 
'''SPW 2'''
 
First, we will run {{flagdata}} with mode='rflag', using the default parameter values, for just one source (the supernova remnant) and spectral window (2):


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='rflag', field='4', spw='2', datacolumn='corrected',  
gaincal(vis='SNR_G55_10s.ms', caltable='SNR_G55_10s.initPh', field='J1925+2106', solint='int',
        action='calculate', display='both', flagbackup=False)
        spw='0:11~14,1;3:30~33,2:32~35', refant='ea24', minblperant=3,
        minsnr=3.0, calmode='p', gaintable='SNR_G55_10s.pos')
</source>
</source>


While this is clearly picking up some RFI, much is being left untouched (see figure to left, below)After stepping through a few baselines and scans, hit "Quit" to stop the flagger.
* caltable='SNR_G55_10s.initPh': this is the output calibration table that will be written.
* field='J1925+2106': this is the phase calibrator we will use to calibrate the phases.
* solint='int': we request a solution for each 10-second integration.
* spw='0:11~14,1;3:30~33,2:32~35': note the syntax of this selection: a ":" is used to separate the SPW from channel selection, ";" is used to separate within this selection of spectral windows, and "~" is used to indicate an inclusive range. 
* refant='ea24': we have chosen ea24 as the reference antenna after inspecting the antenna position diagram (see above).  It is relatively close to, but not directly in, the center of the array, which could be important in D-configuration, since you don't want the reference antenna to have a high probability of being shadowed by nearby antennas.
* minblperant=3: the minimum number of baselines which must be present to attempt a phase solution.
* minsnr=3.0: the minimum signal-to-noise a solution must have to be considered acceptableNote that solutions which fail this test will cause these data to be flagged downstream of this calibration step.
* calmode='p': perform phase-only solutions.
* gaintable='SNR_G55_10s.pos': use the antenna position correction for ea07 that we included in the tar file.
 
Note that a number of solutions do not pass the requirements of the minimum 3 baselines (generating the terminal message "Insufficient unflagged antennas to proceed with this solve.") or minimum signal-to-noise ratio (outputting "n of x solutions rejected due to SNR < 3 ..."). >
 
[[Image:plotcal_ea09_GainPh_v_Time.png|200px|thumb|right|Phases per spw for several antennas]]


Let's try making it more sensitive to deviations from the calculated RMS in frequency, setting both timedevscale and freqdevscale=1.5 (the default is 5.0):
We can inspect the resulting calibration table with {{plotcal}}. Let's iterate over spectral window for a subset of antennas:


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='rflag', field='4', spw='2', datacolumn='corrected', freqdevscale=1.5,  
plotcal(caltable='SNR_G55_10s.initPh', xaxis='time', yaxis='phase', iteration='spw',
        timedevscale=1.5, action='calculate', display='both', flagbackup=False)
        antenna='01~12', plotsymbol='-', plotrange=[-1,-1,-180,180])
</source>
</source>


[[Image:rflag_default_values.png|200px|thumb|left|flagdata/rflag, Default Parameters]]
*plotsymbol='-': This will connect the points with a line, and can help in revealing phase jumps, which can be a sign that they are being affected by RFI. Note that a line jumping from -180 degrees to +180 degrees is not a phase jump, but merely the software wrapping the phase 360 degrees.
[[Image:rflag_cutoff_1.5_sigma.png|200px|thumb|right|flagdata/rflag, Cutoff of 1.5 Sigma]]


Using a cutoff value of 1.5 sigma may seem a bit extreme, but as you can see from the figure on the right, it does a substantially better job of getting rid of the RFI in the badly affected SPW 2.
Spectral window 0 doesn't look too good from about 1:39:04-1:41:22, where several phase jumps can be seen. Use the "Zoom to rect mode" button (rectangle with magnifying glass) to zoom in on the area to get a better view. Spectral window 3 on the other hand looks great, which very stable phases.  


We now run {{flagdata}} to calculate and apply these flags for all data in SPW 2.  Note that this will take a little while.
Now that we've determined our plots look fairly reasonable, but still require further RFI excision, we will create a time-averaged bandpass solutions for the phase calibration source using the {{bandpass}} task.  


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='rflag', spw='2', datacolumn='corrected',  
bandpass(vis='SNR_G55_10s.ms', caltable='SNR_G55_10s.initBP', field='J1925+2106', solint='inf', combine='scan',  
         freqdevscale=1.5, timedevscale=1.5, action='apply', display='', flagbackup=False)
         refant='ea24', minblperant=3, minsnr=10.0, gaintable=['SNR_G55_10s.pos', 'SNR_G55_10s.initPh'],
        interp=['', 'nearest'], solnorm=False)
</source>
</source>
 
Although RFlag has done a pretty good job of finding the bad data, some still remains.  One way to delete it is to use the mode='extend' feature in {{flagdata}}, which can extend flags along a chosen axis.  First, we will extend the flags across polarization, so if any one polarization is flagged, all data for that time / channel will be flagged:


<source lang="python">
* solint='inf', combine='scan': the solution interval of 'inf' will automatically break by scans; this requests that the solution intervals be combined over scans, so that we will get one solution per antenna.
# In CASA
* gaintable=['SNR_G55_10s.pos', 'SNR_G55_10s.initPh']: we will pre-apply both the antenna position corrections as well as the initial phase solutions.
flagdata(vis='SN_G55_10s.ms', mode='extend', spw='2', extendpols=True,
* interp=[<nowiki>''</nowiki>, 'nearest']: by default, {{gaincal}} will use linear interpolation for pre-applied calibration.  However, we want the <i>nearest</i> phase solution to be used for a given time.
        action='apply', display='', flagbackup=False)
</source>


Now, we will extend the flags in time and frequency, using the "growtime" and "growfreq" parameters.  For the data here, the <tt>RFlag</tt> algorithm seems most likely to miss RFI which should be flagged along more of the time axis, so we will try with growtime=50.0, which will flag all data for a given channel if more than 50% of that channel's time is already flagged, and growfreq=90.0, which will flag the entire spectrum for an integration if more than 90% of the channels in that integration are already flagged.
Again, we can see that a number of solutions have been rejected by our choice of <tt>minsnr</tt>.


Again, first just have a look at the flags that will be generated before applying them:
[[Image:plotcal_GainAmp_v_Frequency.png|200px|thumb|right|Bandpasses for antennas ea10 - ea19]]


<source lang="python">
We may plot the bandpasses with plotcal.  
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='extend', spw='2', growtime=50.0,
        growfreq=90.0, action='calculate', display='data', flagbackup=False)
</source>
 
It still appears to be missing some RFI, but this is also a very badly-affected SPW, so leave it as is for now and run to apply the flags:


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='extend', spw='2', growtime=50.0,  
plotcal(caltable='SNR_G55_10s.initBP', xaxis='freq', yaxis='amp',
        growfreq=90.0, action='apply', display='', flagbackup=False)
        iteration='antenna', subplot=331)
</source>
</source>


'''SPW 3'''
* subplot=331: displays 3x3 plots per screen


Now, let's work on SPW 3, flipping through time, baseline, and fields to get a sense of how the flagging will go with these parameters:
Also, we can iterate per spw:


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='rflag', spw='3', datacolumn='corrected', freqdevscale=2.0,
plotcal(caltable='SNR_G55_10s.initBP', xaxis='freq', yaxis='phase',
        timedevscale=2.0, action='calculate', display='both', flagbackup=False)
        iteration='spw', antenna = '1~12', plotsymbol='x', subplot=221)
</source>
</source>


Unfortunately, this SPW is very badly affected by RFI, and it does not seem possible to flag adequately with the automated task (and probably not by hand, either).  In this case, we choose to manually flag the entire SPW:
Let us now apply these calibration tables


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagdata(vis='SN_G55_10s.ms', spw='3', flagbackup=False)
applycal(vis='SNR_G55_10s.ms', gaintable=['SNR_G55_10s.pos', 'SNR_G55_10s.initBP'], calwt=False)
</source>
</source>


'''SPW 4'''
This operation will flag data that correspond to flagged solutions, so {{applycal}} makes a backup version of the flags prior to operating on the data. Note that running {{applycal}} might take a little while.


Moving on to SPW 4:
Now that we have bandpass-corrected data with some RFI flagged out, we will run flagdata in {{rflag}} mode (CASA Cookbook 3.4.2.8). Rflag, like tfcrop, is an autoflag algorithm which uses a sliding window statistical filter. Data is iterated through in chunks of time, where statistics are accumulated, and thresholds calculated.


<source lang="python">
Additional information on the algorithm used in rflag, as well as the statistical details that are undertaken can be found [http://www.aoc.nrao.edu/~rurvashi/FlaggerDocs/node5.html on this webpage] (sections 2.1.7).
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='rflag', spw='4', datacolumn='corrected', freqdevscale=5.0,
        timedevscale=4.0, action='calculate', display='both', flagbackup=False)
</source>


Since the RFI is narrower and more pronounced in this frequency range, we have increased the RMS cutoff for both the time and frequency calculations to avoid over-flagging and deleting good data.  
We will use flagdata with mode='tfcrop', and action='calculate' to first review the amount of data to be flagged. We will also change the datacolumn parameter to 'corrected', since we've applied the bandpass corrections to the MS.  


After checking the data and changing the parameters until you're happy, apply these flags:
''' spw 0 '''


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='rflag', spw='4', datacolumn='corrected', freqdevscale=5.0,  
flagdata(vis='SNR_G55_10s.ms', mode='rflag', spw='0', datacolumn='corrected',  
         timedevscale=4.0, action='apply', flagbackup=False)
         action='calculate', display='both', flagbackup=False)
</source>
</source>


Again, extend the flags along polarization:
[[Image:rflag_default_values.png|200px|thumb|left|flagdata/rflag, Default Parameters]]
[[Image:rflag_cutoff_1.5_sigma.png|200px|thumb|right|flagdata/rflag, Cutoff of 1.5 Sigma]]


<source lang="python">
We now run {{flagdata}} to calculate and apply these flags for all data in SPW 0. Since this spectral window has more RFI, we are including timedevscale and freqdevscale parameters so as to make the task more sensitive to deviations from the calculated RMS in frequency. The default value is 5.0. Note that this will take a little while.
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='extend', spw='4', extendpols=True,
        action='apply', display='', flagbackup=False)
</source>
 
Try extending in frequency and time, as before:


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='extend', spw='4', growtime=50.0, growfreq=90.0,
flagdata(vis='SNR_G55_10s.ms', mode='rflag', spw='0', datacolumn='corrected',
        action='calculate', display='data', flagbackup=False)
        freqdevscale=2.5, timedevscale=2.5, action='apply', display='', flagbackup=False)
</source>
</source>tget
 
 
This looks pretty good, so let's apply it and have a look in plotms:
Although RFlag has done a pretty good job of finding the bad data, some still remains.  One way to excise the remaining bad data is to use the mode='extend' feature in flagdata, which can extend flags along a chosen axis.  First, we will extend the flags across polarization, so if any one polarization is flagged, all data for that time / channel will be flagged:


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='extend', spw='4', growtime=50.0, growfreq=90.0, action='apply', flagbackup=False)
flagdata(vis='SNR_G55_10s.ms', mode='extend', spw='0', extendpols=True,
 
        action='apply', display='', flagbackup=False)
plotms(vis='SN_G55_10s.ms', scan='30,75,120,165,190,235,303', xaxis='baseline', yaxis='amp',
spw='4', iteraxis='scan', correlation='RR,LL', coloraxis = 'baseline')
</source>
</source>


Although we're trying to avoid doing this <i>too</i> much, it appears that there is one baseline which is consistently higher-amplitude than the others, indicating that it's probably contaminated by RFI. Use the plotms tools to identify this baseline, which turns out to be ea04 and ea16, and flag it:
Now, we will extend the flags in time and frequency, using the "growtime" and "growfreq" parameters.  For the data here, the <tt>rflag</tt> algorithm seems most likely to miss RFI which should be flagged along more of the time axis, so we will try with growtime=50.0, which will flag all data for a given channel if more than 50% of that channel's time is already flagged, and growfreq=90.0, which will flag the entire spectrum for an integration if more than 90% of the channels in that integration are already flagged. 


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagdata(vis='SN_G55_10s.ms', antenna='ea04&ea16', spw='4', flagbackup=False)
flagdata(vis='SNR_G55_10s.ms', mode='extend', spw='0', growtime=50.0,
        growfreq=90.0, action='apply', display='', flagbackup=False)
</source>
</source>


'''SPW 5'''
''' spw 1, 2, and 3 '''


We could have narrowed this further by channel and perhaps time, but remember: this tutorial is about the quick-and-dirty way of flagging data!  With this in mind, we move on to SPW 5. Note that this time, we only look at data from the supernova remnant (target) field.
Now, let's work on SPW's 1,2, and 3. We've chosen display='both', in order to first review the flags, and decide if too much or too litle is being flagged. We can always click on 'Quit', and decide to change the freqdevscale and timedevscale parameters, as we did with spectral window 0. Note that spectral window two already has these parameters set, as it contains more RFI.


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='rflag', spw='5', datacolumn='corrected', field='4', freqdevscale=5.0,  
flagdata(vis='SNR_G55_10s.ms', mode='rflag', spw='1', datacolumn='corrected',  
        timedevscale=4.0, action='calculate', display='data', flagbackup=False)
        freqdevscale=4.0, timedevscale=4.0, action='apply', display='both', flagbackup=False)
</source>


The parameters we used for SPW 4 seem to work well for SPW 5 also. Go ahead and flag, then extend as before:
flagdata(vis='SNR_G55_10s.ms', mode='extend', spw='1', extendpols=True,
        action='apply', display='', flagbackup=False)


<source lang="python">
flagdata(vis='SNR_G55_10s.ms', mode='extend', spw='1', growtime=50.0,  
# In CASA
         growfreq=90.0, action='apply', display='', flagbackup=False)
flagdata(vis='SN_G55_10s.ms', mode='rflag',  
        spw='5', datacolumn='corrected',
         freqdevscale=5.0, timedevscale=4.0,
        action='apply', flagbackup=False)


flagdata(vis='SN_G55_10s.ms', mode='extend',
        spw='5', extendpols=True,
        action='apply', flagbackup=False)


flagdata(vis='SN_G55_10s.ms', mode='extend',  
flagdata(vis='SNR_G55_10s.ms', mode='rflag', spw='2', datacolumn='corrected',  
        spw='5', growtime=50.0, growfreq=90.0,
        freqdevscale=2.5, timedevscale=2.5, action='apply', display='both', flagbackup=False)
        action='apply', flagbackup=False)
</source>


'''SPW 7 & 8'''
flagdata(vis='SNR_G55_10s.ms', mode='extend', spw='2', extendpols=True,
        action='apply', display='', flagbackup=False)


Recall that we already deleted SPW 6 due to bad RFI, so we only have 7-9 remaining. SPWs 7 and 8 have similar RFI properties to 4 and 5, so let's use the same RFlag parameters for these (feel free to play with this a bit yourself, if you like, to try to optimize):
flagdata(vis='SNR_G55_10s.ms', mode='extend', spw='2', growtime=50.0,  
        growfreq=90.0, action='apply', display='', flagbackup=False)


<source lang="python">
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='rflag',
        spw='7~8', datacolumn='corrected',
        freqdevscale=5.0, timedevscale=4.0,
        action='apply', flagbackup=False)


flagdata(vis='SN_G55_10s.ms', mode='extend',  
flagdata(vis='SNR_G55_10s.ms', mode='rflag', spw='3', datacolumn='corrected',  
        spw='7~8', extendpols=True,
         freqdevscale=4.0, timedevscale=4.0, action='apply', display='both', flagbackup=False)
         action='apply', flagbackup=False)


flagdata(vis='SN_G55_10s.ms', mode='extend',  
flagdata(vis='SNR_G55_10s.ms', mode='extend', spw='3', extendpols=True,
        spw='7~8', growtime=50.0, growfreq=90.0,
         action='apply', display='', flagbackup=False)
         action='apply', flagbackup=False)
</source>


'''SPW 9'''
flagdata(vis='SNR_G55_10s.ms', mode='extend', spw='3', growtime=50.0,  
 
         growfreq=90.0, action='apply', display='', flagbackup=False)
However, SPW 9 is a bit more affected, and we may wish to use a somewhat lower threshold to catch all the RFI.  First, try with the same parameters:
 
<source lang="python">
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='rflag',  
        spw='9', datacolumn='corrected', field='4',
         freqdevscale=5.0, timedevscale=4.0,
        action='calculate', display='data',
        flagbackup=False)
</source>
</source>


Indeed, this seems to be missing a lot of the RFI. Try less stringent limits:
We can now do as before, and use plotms to see how well rflag has been in removing the RFI.  


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='rflag',  
plotms(vis='SNR_G55_10s.ms', scan='30,75,120,165,190,235,303', xaxis='frequency', yaxis='amp',  
        spw='9', datacolumn='corrected', field='4',
ydatacolumn='corrected', iteraxis='scan', correlation='RR,LL', coloraxis = 'spw')
        freqdevscale=1.0, timedevscale=1.0,
        action='calculate', display='data',
        flagbackup=False)
</source>
</source>


This looks pretty good. Check the calibrator sources to be sure it works for them as well:
We can also plot amplitude vs. baseline, and look for outliers which we may be able to flag.


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='rflag',  
plotms(vis='SNR_G55_10s.ms', scan='30,75,120,165,190,235,303', xaxis='baseline', yaxis='amp',  
        spw='9', datacolumn='corrected', field='3',
ydatacolumn='corrected', iteraxis='scan', correlation='RR,LL', coloraxis = 'spw')
        freqdevscale=1.0, timedevscale=1.0,
        action='calculate', display='data',
        flagbackup=False)
 
flagdata(vis='SN_G55_10s.ms', mode='rflag',  
        spw='9', datacolumn='corrected', field='5',
        freqdevscale=1.0, timedevscale=1.0,
        action='calculate', display='data',
        flagbackup=False)
</source>
</source>


These seem reasonable as well, though it's apparent that 3C147 was very affected, possibly because of its low elevation at the time of the observationApply and extend the flags:
It appears that there is one baseline which is consistently higher-amplitude than the others, indicating that it's probably contaminated by RFIUse the plotms tools to identify this baseline, which turns out to be ea04 and ea16, and is mostly present for spw 0 and 1. Let's flag this baseline:


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='rflag',  
flagdata(vis='SNR_G55_10s.ms', antenna='ea04&ea16', spw='0,1', flagbackup=False)
        spw='9', datacolumn='corrected',
        freqdevscale=1.0, timedevscale=1.0,
        action='apply', flagbackup=False)
 
flagdata(vis='SN_G55_10s.ms', mode='extend',
        spw='9', extendpols=True,
        action='apply', flagbackup=False)
 
flagdata(vis='SN_G55_10s.ms', mode='extend',
        spw='9', growtime=50.0, growfreq=90.0,
        action='apply', flagbackup=False)
 
</source>
</source>


=== Evaluating results & further manual flagging ===
Let's run flagdata in summary mode, to inspect how much data we have flagged thus far:
 
Now, we will use {{flagdata}} to see a summary of how much data we have flagged:


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagInfo = flagdata(vis='SN_G55_10s.ms', mode='summary')
flagInfo = flagdata(vis='SNR_G55_10s.ms', mode='summary')
</source>


Using the information stored in the flagInfo Python dictionary, we can calculate and print out some interesting statistics:
print("\n %2.1f%% of G55.7+3.4, %2.1f%% of 3C147, and %2.1f%% of J1925+2106 are flagged. \n" % (100.0 * flagInfo['field']['G55.7+3.4']['flagged'] / flagInfo['field']['G55.7+3.4']['total'], 100.0 * flagInfo['field']['0542+498=3C147']['flagged'] / flagInfo['field']['0542+498=3C147']['total'], 100.0 * flagInfo['field']['J1925+2106']['flagged'] / flagInfo['field']['J1925+2106']['total']))


<source lang="python">
print("Spectral windows are flagged as follows:")
# In CASA
print("\n %2.1f%% of G55.7+3.4, %2.1f%% of 3C147, and %2.1f%% of J1925+2106 are flagged. \n" % (100.0 * flagInfo['field']['G55.7+3.4']['flagged'] / flagInfo['field']['G55.7+3.4']['total'], 100.0 * flagInfo['field']['0542+498=3C147']['flagged'] / flagInfo['field']['0542+498=3C147']['total'], 100.0 * flagInfo['field']['J1925+2106']['flagged'] / flagInfo['field']['J1925+2106']['total'])) <br />


print("Spectral windows are flagged as follows:")
for spw in range(0,4):
for spw in range(2,10):
     print("SPW %s: %2.1f%%" % (spw, 100.0 * flagInfo['spw'][str(spw)]['flagged'] / flagInfo['spw'][str(spw)]['total']))
     print("SPW %s: %2.1f%%" % (spw, 100.0 * flagInfo['spw'][str(spw)]['flagged'] / flagInfo['spw'][str(spw)]['total']))


</source>
</source>


So, as a result of the flagging thus far, we have sacrificed a bit over half of all the data. Let's see how well it has been cleaned up, using {{plotms}}:
So, as a result of the flagging, we have sacrificed almost 30% of the data for G55.7+3.4.  
 
<source lang="python">
# In CASA
plotms(vis='SN_G55_10s.ms', scan='165', spw='2,4~5,7~9',
      antenna='ea24', xaxis='freq', yaxis='amp',
      correlation='RR,LL', coloraxis='spw')
</source>
 
Unfortunately, despite our best autoflagging efforts, SPW 2 still looks pretty bad. (Take heart -- even the by-hand flagging did not work out well for this one.)  So, we will flag the rest of SPW 2:


<source lang="python">
=== Interactive Flagging ===
# In CASA
flagdata(vis='SN_G55_10s.ms', spw='2', flagbackup=False)
</source>


After this is complete, refresh the plotms window using Shift + Plot. This generates the plot to the left. Just to compare with the unflagged data, we will restore the original flags, and have a look at the same slice. Be sure to save the current flags first!
After plotting our data, it's obvious that there is still some amount of RFI present. We can use plotms to interactively flag points which look bad. A tutorial on flagging data interactively through plotms can be found [https://casaguides.nrao.edu/index.php?title=Data_flagging_with_plotms here]. Please note that flagging data through plotms will not create a backup, so it's important to use the flagmanager before deciding to mark your regions for flagging purposes.  


[[Image:postflag_plotms_scan165.png|200px|thumb|left|After flagging plot]]
[[Image:preflag_plotms_scan165.png|200px|thumb|right|Before flagging plot]]


<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagmanager(vis='SN_G55_10s.ms', mode='save',
flagmanager(vis='SNR_G55_10s.ms', mode='save',
             versionname='after_autoflagging_rflag_1')
             versionname='after_autoflagging_rflag_1')


flagmanager(vis='SN_G55_10s.ms', mode='restore',  
flagmanager(vis='SNR_G55_10s.ms', mode='restore',  
             versionname='flagdata_1')
             versionname='flagdata_1')


plotms(vis='SN_G55_10s.ms', scan='165', spw='4~5,7~9',
plotms(vis='SNR_G55_10s.ms', scan='165', spw='4~5,7~9',
       antenna='ea24', xaxis='freq', yaxis='amp',
       antenna='ea24', xaxis='freq', yaxis='amp',
       correlation='RR,LL', coloraxis='spw')
       correlation='RR,LL', coloraxis='spw')
Line 937: Line 703:
<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagmanager(vis='SN_G55_10s.ms', mode='restore',  
flagmanager(vis='SNR_G55_10s.ms', mode='restore',  
             versionname='after_autoflagging_rflag_1')
             versionname='after_autoflagging_rflag_1')
</source>
</source>
Line 945: Line 711:
<source lang="python">
<source lang="python">
# In CASA
# In CASA
plotms(vis='SN_G55_10s.ms', scan='30,75,120,165,190,235,303',
plotms(vis='SNR_G55_10s.ms', scan='30,75,120,165,190,235,303',
       xaxis='baseline', yaxis='amp', spw='4~5,7~9', iteraxis='spw',
       xaxis='baseline', yaxis='amp', spw='4~5,7~9', iteraxis='spw',
       correlation='RR,LL', coloraxis='antenna1')
       correlation='RR,LL', coloraxis='antenna1')
Line 954: Line 720:
<source lang="python">
<source lang="python">
# In CASA
# In CASA
plotms(vis='SN_G55_10s.ms', scan='30,75,120,165,190,235,303',
plotms(vis='SNR_G55_10s.ms', scan='30,75,120,165,190,235,303',
       xaxis='uvdist', yaxis='amp', spw='4~5,7~9', iteraxis='spw',
       xaxis='uvdist', yaxis='amp', spw='4~5,7~9', iteraxis='spw',
       correlation='RR,LL', coloraxis='antenna1')
       correlation='RR,LL', coloraxis='antenna1')
Line 961: Line 727:
Again, nothing really sticks out as obviously in need of flagging.  Clearly, there is still some residual RFI left here and there -- however, for the purposes of this tutorial, we will accept the current rflag results and and move on to a little more flagging with tfcrop.  
Again, nothing really sticks out as obviously in need of flagging.  Clearly, there is still some residual RFI left here and there -- however, for the purposes of this tutorial, we will accept the current rflag results and and move on to a little more flagging with tfcrop.  


'''tfcrop'''
Let's now move on to a different form of auto-flagging with the {{flagdata}} task called [http://casa.nrao.edu/stable/docs/UserMan/UserMansu161.html tfcrop] (CASA Cookbook 3.4.2.7)
<source lang="python">
# In CASA
default flagdata
mode='tfcrop'
inp
</source>
<pre>
#  flagdata :: All-purpose flagging task based on data-selections and flagging modes/algorithms.
vis                =        ''        #  Name of MS file or calibration table to flag       
mode                =  'tfcrop'        #  Flagging mode                                       
    field          =        ''        #  Field names or field index numbers: '' ==> all,     
                                        #  field='0~2,3C286'                                 
    spw            =        ''        #  Spectral-window/frequency/channel: '' ==> all, spw='0:17~19'
    antenna        =        ''        #  Antenna/baselines: '' ==> all, antenna ='3,VA04'           
    timerange      =        ''        #  Time range: '' ==> all,timerange='09:14:0~09:54:0'         
    correlation    =        ''        #  Correlation: '' ==> all, correlation='XX,YY'               
    scan          =        ''        #  Scan numbers: '' ==> all                                   
    intent        =        ''        #  Scan intent: '' ==> all, intent='CAL*POINT*'               
    array          =        ''        #  (Sub)array numbers: '' ==> all                             
    uvrange        =        ''        #  UV range: '' ==> all; uvrange ='0~100klambda', default     
                                        #  units=meters                                             
    observation    =        ''        #  Observation ID: '' ==> all                                 
    feed          =        ''        #  Multi-feed numbers: Not yet implemented                   
    ntime          =    'scan'        #  Time-range to use for each chunk (in seconds or minutes)   
    combinescans  =      False        #  Accumulate data across scans depending on the value of ntime.
    datacolumn    =    'DATA'        #  Data column on which to operate                             
                                        #  (data,corrected,model,weight,etc.)                         
    timecutoff    =        4.0        #  Flagging thresholds in units of deviation from the fit     
    freqcutoff    =        3.0        #  Flagging thresholds in units of deviation from the fit     
    timefit        =    'line'        #  Fitting function for the time direction (poly/line)         
    freqfit        =    'poly'        #  Fitting function for the frequency direction (poly/line)   
    maxnpieces    =          7        #  Number of pieces in the polynomial-fits (for 'freqfit' or
                                        #  'timefit' = 'poly')
    flagdimension  = 'freqtime'        #  Dimensions along which to calculate fits
                                        #  (freq/time/freqtime/timefreq)
    usewindowstats =    'none'        #  Calculate additional flags using sliding window statistics
                                        #  (none,sum,std,both)
    halfwin        =          1        #  Half-width of sliding window to use with 'usewindowstats'
                                        #  (1,2,3).
    extendflags    =      True        #  Extend flags along time, frequency and correlation.
    action        =    'apply'        #  Action to perform in MS and/or in inpfile (none/apply/calculate)
    display        =        ''        #  Display data and/or end-of-MS reports at runtime
                                        #  (data/report/both).
    flagbackup    =      True        #  Back up the state of flags before the run
savepars            =      False        #  Save the current parameters to the FLAG_CMD table or to a file
</pre>
Tfcrop is an algorithm that detects outliers in the 2D time-frequency plane, and can operate on un-calibrated data (non bandpass-corrected).
Much like rflag, tfcrop will iterate through chunks of time, and undergo several steps in order to find and excise different types of RFI.
Step 1 will look for and find short-duration RFI spikes (narrow-band and broad-band). <br />
Step 2 looks for time-persistent RFI.<br />
Step 3 will look for time-persistent, narrow-band RFI. <br />
Step 4 will look for low-level wings of very strong RFI. <br />
More details on the algorithm steps can be found on this [http://www.aoc.nrao.edu/~rurvashi/TFCrop/TFCropV1/node2.html#SECTION00023000000000000000 webpage]
We will apply the auto-flagging tfcrop algorithm to the most affected spectral windows 4,7, and 9.
First, lets plot the corrected data, so we can compare the data before and after tfcrop.
[[Image:corramp_vs_freq_before_tfcrop.png|200px|thumb|right|Plot of corrected data before tfcrop.]]
<source lang="python">
# In CASA
plotms(vis='SN_G55_10s.ms', scan='30,75,120,165,190,235,303',
      spw='4~5,7~9', antenna='ea24', xaxis='freq', yaxis='amp',
      ydatacolumn='corrected', correlation='RR,LL', coloraxis='spw')
</source>
'''SPW 4'''
Calculate how much of the RFI in spw 4 will be detected and flagged.
<source lang="python">
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='tfcrop', spw='4', datacolumn='corrected', action='calculate', display='both', flagbackup=False)
</source>
We can see that tfcrop is still finding and flagging RFI in this spectral window. Let's now apply the flags.
<source lang="python">
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='tfcrop', spw='4', datacolumn='corrected', action='apply', display='', flagbackup=False)
</source>
We can now move on to spw 7 and 9.
'''SPW 7'''
<source lang="python">
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='tfcrop', spw='7',
        datacolumn='corrected', action='calculate',
        display='both', flagbackup=False)
flagdata(vis='SN_G55_10s.ms', mode='tfcrop', spw='7',
        datacolumn='corrected', action='apply',
        display='', flagbackup=False)
</source>
[[Image:corramp_vs_freq_after_tfcrop.png|200px|thumb|right|Plot of corrected data after tfcrop.]]
[[Image:post_tfcrop_flag_scan165.png|200px|thumb|right|Amplitude vs. Frequency after tfcrop.]]
'''SPW 9'''
<source lang="python">
# In CASA
flagdata(vis='SN_G55_10s.ms', mode='tfcrop', spw='9',
        datacolumn='corrected', action='calculate',
        display='both', flagbackup=False)
flagdata(vis='SN_G55_10s.ms', mode='tfcrop', spw='9',
        datacolumn='corrected', action='apply',
        display='', flagbackup=False)
</source>
We can now use {{plotms}} to review the effects of using tfcrop and compare. 
<source lang="python">
# In CASA
plotms(vis='SN_G55_10s.ms', scan='30,75,120,165,190,235,303', spw='4~5,7~9',
      antenna='ea24', xaxis='freq', yaxis='amp', plotrange=[-1,-1,0,4],
      ydatacolumn='corrected', correlation='RR,LL', coloraxis='spw')
</source>
We can see that there are improvements, especially for SPW 9 which had some of the worst RFI remaining. <br />
Now, let's inspect just scan 165 for all spectral windows.
<source lang="python">
# In CASA
plotms(vis='SN_G55_10s.ms', scan='165', spw='4~5,7~9', antenna='ea24',
      xaxis='freq', yaxis='amp', plotrange=[-1,-1,-0.005, 0.03],
      correlation='RR,LL', coloraxis='spw')
</source>
We can compare this post-tfcrop plot to the post-rflag plot, and see that there are slight improvements. We can also do as before, and calculate the percentage of flagged data.
<source lang="python">
# In CASA
flagInfo = flagdata(vis='SN_G55_10s.ms', mode='summary')
print("\n %2.1f%% of G55.7+3.4, %2.1f%% of 3C147, and %2.1f%% of J1925+2106 are flagged. \n" % (100.0 * flagInfo['field']['G55.7+3.4']['flagged'] / flagInfo['field']['G55.7+3.4']['total'], 100.0 * flagInfo['field']['0542+498=3C147']['flagged'] / flagInfo['field']['0542+498=3C147']['total'], 100.0 * flagInfo['field']['J1925+2106']['flagged'] / flagInfo['field']['J1925+2106']['total'])) <br />
print("Spectral windows are flagged as follows:")
for spw in range(2,10):
    print("SPW %s: %2.1f%%" % (spw, 100.0 * flagInfo['spw'][str(spw)]['flagged'] / flagInfo['spw'][str(spw)]['total']))
</source>
We have flagged a little over 66% of the data from G66.7+3.4.


Before moving on, let's create a backup of our data using the {{flagmanager}} task as we did before.  
Before moving on, let's create a backup of our data using the {{flagmanager}} task as we did before.  
Line 1,121: Line 732:
<source lang="python">
<source lang="python">
# In CASA
# In CASA
flagmanager(vis='SN_G55_10s.ms', mode='save',  
flagmanager(vis='SNR_G55_10s.ms', mode='save',  
             versionname='after_autoflagging_tfcrop_1')
             versionname='after_autoflagging_tfcrop_1')
</source>
</source>

Revision as of 18:41, 10 March 2016

  • Topical guide, part 1 of 2.
  • This CASA guide is designed for CASA 4.5.2
    • This guide is under construction**

Overview

This CASA guide will cover priori data flagging, including online flagging, shadowing, zero clipping, and quacking. We will then move on to auto-flagging RFI via tfcrop and rflag.

Part 2 of the guide covers advanced imaging, including Multi-Scale, MS-MFS, W/AW-Projection, widefield, outlier fields, spectral index imaging, and imaging in interactive mode. Other topics include primary beam corrections, small scale bias, and weighting.

We will be utilizing data taken with the Karl G. Jansky, Very Large Array, of a supernova remnant G055.7+3.4.. The data were taken on August 23, 2010, in the first D-configuration for which the new wide-band capabilities of the WIDAR (Wideband Interferometric Digital ARchitecture) correlator were available. The 8-hour-long observation includes all available 1 GHz of bandwidth in L-band, from 1-2 GHz in frequency.

Obtaining the Data

A copy of the data (5.1GB) can be downloaded here: ###PROVIDE LINK###

For convenience, we will start with this data set that has been imported using importasdm().

importasdm(asdm='AB1345_sb1800808_1.55431.004049953706', vis='SNR_G55.ms', process_flags=True, tbuff=1.5, applyflags=False, outfile='SNR_G55.ms.onlineflags.txt', flagbackup=False)

  • process_flags=True: This parameter controls the creation of online flags from the Flag.xml SDM table. It will create online flags in the FLAG_CMD sub-table within the MS (more on this later).
  • tbuff=1.5: This parameter adds a time "buffer" padding to the flags in both directions to deal with timing mismatches. This is important for JVLA data taken before April 2011. This value should be set to 1.5x integration time. This particular observation had 1 second integrations. (CASA Cookbook section 2.2.2 and 3.5.1.3)
  • applyflags=False: We will apply these flags later in the tutorial.
  • outfile='SNR_G55.ms.onlineflags.txt': This will create a text file with a list of online flags that can be applied. Created just for convenience, and won't be used during the tutorial.

Split and time-averaged using the new task split2() task which uses the mstransform() framework. Please note that split2 will be replacing split in future CASA releases.

split2(vis='SNR_G55.ms', outputvis='SNR_G55_10s.ms', field='3~5', spw='4~5,7~8', antenna='!ea06,ea17,ea20,ea26', datacolumn='data', keepflags=False, timebin='10s')

  • field: Several fields have been removed which we won't be utilizing. Only keeping fields 3-5.
  • spw: Several spectral windows have been removed which were polluted with RFI, which neither auto-flagging nor hand flagging could remedy. Keeping spectral windows 4,5,7,8.
  • antenna: Several antennas have been removed (!), which at the time of the observation, didn't have an L-Band receiver installed. (more on this later)
  • Time-averaged to 10-seconds, to reduce size and processing time when running tasks.

The original data set is roughly (170GB) in size, and can be downloaded from the NRAO Science Data Archive. The archive file name is AB1345_sb1800808_1.55431.004049953706. Note that within the archive, you can also request specific scans which can be time averaged, with online flags applied.

Once you've downloaded the file, let's untar it:

tar -xzvf SNR_G55_10s.ms.tar.gz

This should take several minutes, but once it's complete, you will have a directory called SNR_G55_10s.ms (6.1GB) and SNR_G55_10s.pos, which are the MS (Measurement Set) and antenna position corrections.

The antenna position corrections were generated using gencal:
gencal(vis='SNR_G55_10s.ms', caltable='SNR_G55_10s.pos', caltype='antpos')

In order to save time, we've included them in the tar file and will be applying them later in the tutorial.

Starting CASA 4.5.2

Start CASA by typing casa on a terminal command line. If you have not used CASA before, some helpful tips are available on the Getting Started in CASA page.

This guide has been written for CASA version 4.5.2. Please confirm your version before proceeding by checking the message in the command line interface window or the CASA logger after startup.

For this tutorial, we will be running tasks using the task (parameter = value) syntax. When called in this manner, all parameters not explicitly set will use their default values.

Preliminary Data Evaluation

As a first step, use listobs to have a look at the MS:

# In CASA
listobs(vis='SNR_G55_10s.ms', listfile='SNR_G55_10s.listobs')
  • listfile: Creates a text document with details for the observation.
#CASA log when listfile is not defined
2016-03-07 16:54:23 INFO listobs  ##########################################
2016-03-07 16:54:23 INFO listobs  ##### Begin Task: listobs            #####
2016-03-07 16:54:23 INFO listobs  listobs(vis="SNR_G55_10s.ms",selectdata=True,spw="",field="",antenna="",
2016-03-07 16:54:23 INFO listobs	  uvrange="",timerange="",correlation="",scan="",intent="",
2016-03-07 16:54:23 INFO listobs	  feed="",array="",observation="",verbose=True,listfile="",
2016-03-07 16:54:23 INFO listobs	  listunfl=False,cachesize=50,overwrite=False)
2016-03-07 16:54:23 INFO listobs  ================================================================================
2016-03-07 16:54:23 INFO listobs	     MeasurementSet Name:  /lustre/aoc/sciops/CASA_Tutorials/SNR_G55_10s.ms      MS Version 2
2016-03-07 16:54:23 INFO listobs  ================================================================================
2016-03-07 16:54:23 INFO listobs     Observer: Dr. Sanjay Sanjay Bhatnagar     Project: uid://evla/pdb/1072564  
2016-03-07 16:54:23 INFO listobs  Observation: EVLA
2016-03-07 16:54:25 INFO listobs  Data records: 3780000       Total elapsed time = 26926 seconds
2016-03-07 16:54:25 INFO listobs     Observed from   23-Aug-2010/00:56:36.0   to   23-Aug-2010/08:25:22.0 (UTC)
2016-03-07 16:54:33 INFO listobs	   
2016-03-07 16:54:33 INFO listobs     ObservationID = 0         ArrayID = 0
2016-03-07 16:54:33 INFO listobs  Date        Timerange (UTC)          Scan  FldId FieldName    nRows     SpwIds       Average Interval(s)    ScanIntent
2016-03-07 16:54:33 INFO listobs  23-Aug-2010/00:56:36.0 - 00:58:06.0    14      0 J1925+2106     12600  [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      00:58:06.0 - 00:59:36.0    15      0 J1925+2106     12600  [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      00:59:36.0 - 01:01:05.0    16      0 J1925+2106     12600  [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [CALIBRATE_PHASE#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:01:05.0 - 01:02:35.0    17      0 J1925+2106     12600  [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:02:35.0 - 01:04:05.0    18      0 J1925+2106     12600  [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:04:05.0 - 01:05:34.0    19      0 J1925+2106     12600  [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [CALIBRATE_PHASE#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:05:34.0 - 01:07:04.0    20      0 J1925+2106     12600  [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:07:04.0 - 01:08:34.0    21      1 G55.7+3.4      12600  [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:08:34.0 - 01:10:04.0    22      1 G55.7+3.4      12600  [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:10:04.0 - 01:11:34.0    23      1 G55.7+3.4      12600  [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:11:34.0 - 01:13:03.0    24      1 G55.7+3.4      12600  [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:13:03.0 - 01:14:33.0    25      1 G55.7+3.4      12600  [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:14:33.0 - 01:16:03.0    26      1 G55.7+3.4      12600  [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:16:03.0 - 01:17:33.0    27      1 G55.7+3.4      12600  [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:17:33.0 - 01:19:02.0    28      1 G55.7+3.4      12600  [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:19:02.0 - 01:20:32.0    29      1 G55.7+3.4      12600  [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:20:32.0 - 01:22:02.0    30      1 G55.7+3.4      12600  [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:22:02.0 - 01:23:32.0    31      1 G55.7+3.4      12600  [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:23:32.0 - 01:25:01.0    32      1 G55.7+3.4      12600  [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:25:01.0 - 01:26:31.0    33      1 G55.7+3.4      12600  [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:26:31.0 - 01:28:01.0    34      1 G55.7+3.4      12600  [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:28:01.0 - 01:29:31.0    35      1 G55.7+3.4      12600  [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:29:31.0 - 01:31:00.0    36      1 G55.7+3.4      12600  [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:31:00.0 - 01:32:30.0    37      1 G55.7+3.4      12600  [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:32:30.0 - 01:34:00.0    38      1 G55.7+3.4      12600  [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:34:00.0 - 01:35:30.0    39      1 G55.7+3.4      12600  [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:35:30.0 - 01:36:59.0    40      1 G55.7+3.4      12600  [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:36:59.0 - 01:38:29.0    41      0 J1925+2106     12600  [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:38:29.0 - 01:39:59.0    42      0 J1925+2106     12600  [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:39:59.0 - 01:41:29.0    43      0 J1925+2106     12600  [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_PHASE#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      01:41:29.0 - 01:42:58.0    44      1 G55.7+3.4      12600  [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [OBSERVE_TARGET#UNSPECIFIED]
<snip>
2016-03-07 16:54:33 INFO listobs	      08:11:54.0 - 08:13:24.0   305      1 G55.7+3.4      12600  [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      08:13:24.0 - 08:14:54.0   306      1 G55.7+3.4      12600  [0,1,2,3]  [10, 10, 10, 10, 10] [OBSERVE_TARGET#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      08:14:54.0 - 08:16:24.0   307      2 0542+498=3C147 12600  [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      08:16:24.0 - 08:17:54.0   308      2 0542+498=3C147 12600  [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      08:17:54.0 - 08:19:23.0   309      2 0542+498=3C147 12600  [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      08:19:23.0 - 08:20:53.0   310      2 0542+498=3C147 12600  [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      08:20:53.0 - 08:22:23.0   311      2 0542+498=3C147 12600  [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      08:22:23.0 - 08:23:52.0   312      2 0542+498=3C147 12600  [0,1,2,3]  [9.89, 9.89, 9.89, 9.89, 9.89] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	      08:23:52.0 - 08:25:22.0   313      2 0542+498=3C147 12600  [0,1,2,3]  [10, 10, 10, 10, 10] [CALIBRATE_AMPLI#UNSPECIFIED,CALIBRATE_BANDPASS#UNSPECIFIED,UNSPECIFIED#UNSPECIFIED]
2016-03-07 16:54:33 INFO listobs	           (nRows = Total number of rows per scan) 
2016-03-07 16:54:33 INFO listobs  Fields: 3
2016-03-07 16:54:33 INFO listobs   ID   Code Name                RA               Decl           Epoch   SrcId      nRows
2016-03-07 16:54:33 INFO listobs   0    D    J1925+2106          19:25:59.605371 +21.06.26.16218 J2000   0         541800
2016-03-07 16:54:33 INFO listobs   1    NONE G55.7+3.4           19:21:40.000000 +21.45.00.00000 J2000   1        3150000
2016-03-07 16:54:33 INFO listobs   2    N    0542+498=3C147      05:42:36.137916 +49.51.07.23356 J2000   2          88200
2016-03-07 16:54:33 INFO listobs  Spectral Windows:  (5 unique spectral windows and 1 unique polarization setups)
2016-03-07 16:54:33 INFO listobs   SpwID  Name      #Chans   Frame   Ch0(MHz)  ChanWid(kHz)  TotBW(kHz) CtrFreq(MHz) BBC Num  Corrs          
2016-03-07 16:54:33 INFO listobs   0      Subband:0     64   TOPO    1256.000      2000.000    128000.0   1319.0000        4  RR  RL  LR  LL
2016-03-07 16:54:33 INFO listobs   1      Subband:2     64   TOPO    1384.000      2000.000    128000.0   1447.0000        4  RR  RL  LR  LL
2016-03-07 16:54:33 INFO listobs   2      Subband:1     64   TOPO    1648.000      2000.000    128000.0   1711.0000        8  RR  RL  LR  LL
2016-03-07 16:54:33 INFO listobs   3      Subband:0     64   TOPO    1776.000      2000.000    128000.0   1839.0000        8  RR  RL  LR  LL
2016-03-07 16:54:33 INFO listobs  Sources: 15
2016-03-07 16:54:33 INFO listobs   ID   Name                SpwId RestFreq(MHz)  SysVel(km/s) 
2016-03-07 16:54:33 INFO listobs   0    J1925+2106          0     -              -            
2016-03-07 16:54:33 INFO listobs   0    J1925+2106          1     -              -            
2016-03-07 16:54:33 INFO listobs   0    J1925+2106          2     -              -            
2016-03-07 16:54:33 INFO listobs   0    J1925+2106          3     -              -            
2016-03-07 16:54:33 INFO listobs   1    G55.7+3.4           0     -              -            
2016-03-07 16:54:33 INFO listobs   1    G55.7+3.4           1     -              -            
2016-03-07 16:54:33 INFO listobs   1    G55.7+3.4           2     -              -            
2016-03-07 16:54:33 INFO listobs   1    G55.7+3.4           3     -              -            
2016-03-07 16:54:33 INFO listobs   2    0542+498=3C147      0     -              -            
2016-03-07 16:54:33 INFO listobs   2    0542+498=3C147      1     -              -            
2016-03-07 16:54:33 INFO listobs   2    0542+498=3C147      2     -              -            
2016-03-07 16:54:33 INFO listobs   2    0542+498=3C147      3     -              -            
2016-03-07 16:54:34 INFO listobs  Antennas: 27:
2016-03-07 16:54:34 INFO listobs   ID   Name  Station   Diam.    Long.         Lat.                Offset from array center (m)                ITRF Geocentric coordinates (m)        
2016-03-07 16:54:34 INFO listobs                                                                East       North    Elevation        x               y               z
2016-03-07 16:54:34 INFO listobs   0    ea01  W09       25.0 m   -107.37.25.2  +33.53.51.0   -521.9416   -332.7766    -1.2001 -1601710.017000 -5042006.925200  3554602.355600
2016-03-07 16:54:34 INFO listobs   1    ea02  E02       25.0 m   -107.37.04.4  +33.54.01.1      9.8240    -20.4293    -2.7806 -1601150.060300 -5042000.619800  3554860.729400
2016-03-07 16:54:34 INFO listobs   2    ea03  E09       25.0 m   -107.36.45.1  +33.53.53.6    506.056    -251.8670    -3.5825 -1600715.950800 -5042273.187000  3554668.184500
2016-03-07 16:54:34 INFO listobs   3    ea04  W01       25.0 m   -107.37.05.9  +33.54.00.5    -27.3562    -41.3030    -2.7418 -1601189.030140 -5042000.493300  3554843.425700
2016-03-07 16:54:34 INFO listobs   4    ea05  W08       25.0 m   -107.37.21.6  +33.53.53.0   -432.1167   -272.1478    -1.5054 -1601614.091000 -5042001.652900  3554652.509300
2016-03-07 16:54:34 INFO listobs   5    ea06  N06       25.0 m   -107.37.06.9  +33.54.10.3    -54.0649    263.8778    -4.2273 -1601162.591000 -5041828.999000  3555095.896400
2016-03-07 16:54:34 INFO listobs   6    ea07  E05       25.0 m   -107.36.58.4  +33.53.58.8    164.9788    -92.8032    -2.5268 -1601014.462000 -5042086.252000  3554800.799800
2016-03-07 16:54:34 INFO listobs   7    ea08  N01       25.0 m   -107.37.06.0  +33.54.01.8    -30.8810     -1.4664    -2.8597 -1601185.634945 -5041978.156586  3554876.424700
2016-03-07 16:54:34 INFO listobs   8    ea09  E06       25.0 m   -107.36.55.6  +33.53.57.7    236.9058   -126.3369    -2.4443 -1600951.588000 -5042125.911000  3554773.012300
2016-03-07 16:54:34 INFO listobs   9    ea10  N03       25.0 m   -107.37.06.3  +33.54.04.8    -39.0773     93.0192    -3.3330 -1601177.376760 -5041925.073200  3554954.584100
2016-03-07 16:54:34 INFO listobs   10   ea11  E04       25.0 m   -107.37.00.8  +33.53.59.7    102.8054    -63.7682    -2.6414 -1601068.790300 -5042051.910200  3554824.835300
2016-03-07 16:54:34 INFO listobs   11   ea12  E08       25.0 m   -107.36.48.9  +33.53.55.1    407.8285   -206.0065    -3.2272 -1600801.926000 -5042219.366500  3554706.448200
2016-03-07 16:54:34 INFO listobs   12   ea13  N07       25.0 m   -107.37.07.2  +33.54.12.9    -61.1037    344.2331    -4.6138 -1601155.635800 -5041783.843800  3555162.374100
2016-03-07 16:54:34 INFO listobs   13   ea15  W06       25.0 m   -107.37.15.6  +33.53.56.4   -275.8288   -166.7451    -2.0590 -1601447.198000 -5041992.502500  3554739.687600
2016-03-07 16:54:34 INFO listobs   14   ea16  W02       25.0 m   -107.37.07.5  +33.54.00.9    -67.9687    -26.5614    -2.7175 -1601225.255200 -5041980.383590  3554855.675000
2016-03-07 16:54:34 INFO listobs   15   ea17  W07       25.0 m   -107.37.18.4  +33.53.54.8   -349.9877   -216.7509    -1.7975 -1601526.387300 -5041996.840100  3554698.327400
2016-03-07 16:54:34 INFO listobs   16   ea18  N09       25.0 m   -107.37.07.8  +33.54.19.0    -77.4346    530.6273    -5.5859 -1601139.485100 -5041679.036800  3555316.533200
2016-03-07 16:54:34 INFO listobs   17   ea19  W04       25.0 m   -107.37.10.8  +33.53.59.1   -152.8599    -83.8054    -2.4614 -1601315.893000 -5041985.320170  3554808.304600
2016-03-07 16:54:34 INFO listobs   18   ea20  N05       25.0 m   -107.37.06.7  +33.54.08.0    -47.8454    192.6015    -3.8723 -1601168.786100 -5041869.054000  3555036.936000
2016-03-07 16:54:34 INFO listobs   19   ea21  E01       25.0 m   -107.37.05.7  +33.53.59.2    -23.8638    -81.1510    -2.5851 -1601192.467800 -5042022.856800  3554810.438800
2016-03-07 16:54:34 INFO listobs   20   ea22  N04       25.0 m   -107.37.06.5  +33.54.06.1    -42.6239    132.8436    -3.5494 -1601173.979400 -5041902.657700  3554987.517500
2016-03-07 16:54:34 INFO listobs   21   ea23  E07       25.0 m   -107.36.52.4  +33.53.56.5    318.0509   -164.1850    -2.6957 -1600880.571400 -5042170.388000  3554741.457400
2016-03-07 16:54:34 INFO listobs   22   ea24  W05       25.0 m   -107.37.13.0  +33.53.57.8   -210.0959   -122.3887    -2.2577 -1601377.009500 -5041988.665500  3554776.393400
2016-03-07 16:54:34 INFO listobs   23   ea25  N02       25.0 m   -107.37.06.2  +33.54.03.5    -35.6245     53.1806    -3.1345 -1601180.861480 -5041947.453400  3554921.628700
2016-03-07 16:54:34 INFO listobs   24   ea26  W03       25.0 m   -107.37.08.9  +33.54.00.1   -105.3447    -51.7177    -2.6037 -1601265.153600 -5041982.533050  3554834.858400
2016-03-07 16:54:34 INFO listobs   25   ea27  E03       25.0 m   -107.37.02.8  +33.54.00.5     50.6641    -39.4835    -2.7273 -1601114.365500 -5042023.151800  3554844.944000
2016-03-07 16:54:34 INFO listobs   26   ea28  N08       25.0 m   -107.37.07.5  +33.54.15.8    -68.9057    433.1889    -5.0602 -1601147.940400 -5041733.837000  3555235.956000
2016-03-07 16:54:34 INFO listobs ##### End Task: listobs              #####
2016-03-07 16:54:34 INFO listobs ##########################################
  • J1925+2106, field ID 0: Phase Calibrator;
  • G55.7+3.4, field ID 1: The Supernova Remnant;
  • 0542+498=3C147, field ID 2: Amplitude/Bandpass Calibrator

We can also see that these sources have associated "scan intents", which indicate their function in the observation. Note that you can select sources based on their intents in certain CASA tasks. The various scan intents in this data set are:

  • CALIBRATE_PHASE indicates that this is a scan to be used for gain calibration;
  • OBSERVE_TARGET indicates that this is the science target;
  • CALIBRATE_AMPLI indicates that this is to be used for flux calibration; and
  • CALIBRATE_BANDPASS indicates that these scans are to be used for bandpass calibration.

Note that 3C147 is to be used for both flux and bandpass calibration.

It's important to also note that the antennas have a name and ID associated with them. For example antenna ID 15 is named ea17 ( The "ea" stemming from the Expanded VLA project). When specifying an antenna within a task parameter, we will mainly reference them by name.

We can see the antenna configuration for this observation by using plotants:

# In CASA
plotants(vis='SNR_G55_10s.ms', figfile='SNR_G55_10s.plotants.png')
plotants image

This shows that antennas ea01, ea03, and ea18 were on the extreme ends of the west, east, and north arms, respectively. The antenna position diagram is particularly useful as a guide to help determine which antenna to use as the reference antenna later during calibration. Note that antennas on stations 8 of each arm (N08, E08, W08) do not get moved during array reconfigurations, they can therefore at times be good choices as reference antennas. In this case, we'll probably want to choose something closer to the center of the array.

We may also inspect the raw data using plotms. To start with, lets look at a subset of scans on the supernova remnant:

# In CASA
plotms(vis='SNR_G55_10s.ms', scan='30,75,120,165,190,235,303', antenna='ea24', xaxis='freq', 
       yaxis='amp', coloraxis='spw', iteraxis='scan', correlation='RR,LL')
plotms image
  • coloraxis='spw': Parameter indicates that a different color will be assigned to each spectral window.
  • antenna='ea24' : We chose only information for antenna ea24.
  • iteraxis='scan': Parameter tells plotms to display a new plot for each scan.
  • correlation='RR,LL': We just want to display the right and left circular polarizations, without the cross-hand terms.

Flipping through to scan 190, we can see that there is significant time and frequency variable RFI present in the observation, as seen by the large spikes in amplitude. In particular, we can see that several spectral windows are quite badly affected. To determine which spectral windows they are, click on the "Mark Regions" tool at the bottom of the plotms GUI (the open box with a green "plus" sign). Use the mouse to select a few of the highest-amplitude points in each of the spectral windows. Click on the "Locate" button (magnifying glass sign). Information about the selected areas should now display in the logger window:

Frequency in [1.30662 1.31407] or [1.32377 1.33569] or [1.67866 1.69581], Amp in [0.16871 0.217097] or [0.153226 0.186613] or [0.172581 0.235968]:
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:19:58.0 BL=ea16@W02 & ea24@W05[14&22] Spw=0 Chan=27 Freq=1.31  Corr=RR X=1.31  Y=0.17187   (1718/144/1718)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:19:58.0 BL=ea19@W04 & ea24@W05[17&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.178607  (1975/144/1975)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:19:58.0 BL=ea22@N04 & ea24@W05[20&22] Spw=0 Chan=37 Freq=1.33  Corr=RR X=1.33  Y=0.18105   (2250/144/2250)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:08.0 BL=ea19@W04 & ea24@W05[17&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.21228   (1975/145/1975)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:08.0 BL=ea21@E01 & ea24@W05[19&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.181632  (2103/145/2103)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:08.0 BL=ea22@N04 & ea24@W05[20&22] Spw=0 Chan=37 Freq=1.33  Corr=RR X=1.33  Y=0.167068  (2250/145/2250)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:28.0 BL=ea19@W04 & ea24@W05[17&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.216252  (1818323722/147/1975)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:28.0 BL=ea22@N04 & ea24@W05[20&22] Spw=0 Chan=37 Freq=1.33  Corr=RR X=1.33  Y=0.182341  (1818323997/147/2250)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:38.0 BL=ea07@E05 & ea24@W05[6&22]  Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.175032  (1866691864/148/695)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:38.0 BL=ea09@E06 & ea24@W05[8&22]  Spw=0 Chan=27 Freq=1.31  Corr=RR X=1.31  Y=0.176728  (1866692119/148/950)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:38.0 BL=ea16@W02 & ea24@W05[14&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.170435  (1866692888/148/1719)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:38.0 BL=ea19@W04 & ea24@W05[17&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.210123  (1866693144/148/1975)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:38.0 BL=ea21@E01 & ea24@W05[19&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.185065  (1866693272/148/2103)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:38.0 BL=ea22@N04 & ea24@W05[20&22] Spw=0 Chan=37 Freq=1.33  Corr=RR X=1.33  Y=0.158359  (1866693419/148/2250)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:38.0 BL=ea24@W05 & ea27@E03[22&25] Spw=0 Chan=27 Freq=1.31  Corr=RR X=1.31  Y=0.190659  (1866693783/148/2614)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:48.0 BL=ea21@E01 & ea24@W05[19&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.197052  (1852669347/149/2103)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:48.0 BL=ea22@N04 & ea24@W05[20&22] Spw=0 Chan=37 Freq=1.33  Corr=RR X=1.33  Y=0.183905  (1852669494/149/2250)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:48.0 BL=ea24@W05 & ea27@E03[22&25] Spw=0 Chan=27 Freq=1.31  Corr=RR X=1.31  Y=0.170542  (1852669858/149/2614)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:58.0 BL=ea21@E01 & ea24@W05[19&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.179017  (1668509051/150/2103)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:58.0 BL=ea22@N04 & ea24@W05[20&22] Spw=0 Chan=37 Freq=1.33  Corr=RR X=1.33  Y=0.177841  (1668509198/150/2250)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:21:08.0 BL=ea21@E01 & ea24@W05[19&22] Spw=0 Chan=27 Freq=1.31  Corr=LL X=1.31  Y=0.193158  (1866681459/151/2103)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:19:58.0 BL=ea19@W04 & ea24@W05[17&22] Spw=2 Chan=19 Freq=1.686 Corr=RR X=1.686 Y=0.209811  (4844192/162/1958)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:19:58.0 BL=ea19@W04 & ea24@W05[17&22] Spw=2 Chan=19 Freq=1.686 Corr=LL X=1.686 Y=0.224424  (4844193/162/1959)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:08.0 BL=ea19@W04 & ea24@W05[17&22] Spw=2 Chan=19 Freq=1.686 Corr=RR X=1.686 Y=0.231918  (1374179750/163/1958)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:08.0 BL=ea19@W04 & ea24@W05[17&22] Spw=2 Chan=19 Freq=1.686 Corr=LL X=1.686 Y=0.209708  (1374179751/163/1959)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:18.0 BL=ea08@N01 & ea24@W05[7&22]  Spw=2 Chan=19 Freq=1.686 Corr=RR X=1.686 Y=0.17744   (2898499/164/806)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:18.0 BL=ea10@N03 & ea24@W05[9&22]  Spw=2 Chan=19 Freq=1.686 Corr=LL X=1.686 Y=0.177235  (2898756/164/1063)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:18.0 BL=ea19@W04 & ea24@W05[17&22] Spw=2 Chan=19 Freq=1.686 Corr=RR X=1.686 Y=0.230346  (2899651/164/1958)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:18.0 BL=ea19@W04 & ea24@W05[17&22] Spw=2 Chan=19 Freq=1.686 Corr=LL X=1.686 Y=0.199502  (2899652/164/1959)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:28.0 BL=ea08@N01 & ea24@W05[7&22]  Spw=2 Chan=19 Freq=1.686 Corr=RR X=1.686 Y=0.177315  (6083110/165/806)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:28.0 BL=ea10@N03 & ea24@W05[9&22]  Spw=2 Chan=19 Freq=1.686 Corr=LL X=1.686 Y=0.17881   (6083367/165/1063)
Scan=190 Field=G55.7+3.4[1] Time=2010/08/23/05:20:28.0 BL=ea19@W04 & ea24@W05[17&22] Spw=2 Chan=19 Freq=1.686 Corr=RR X=1.686 Y=0.217573  (6084262/165/1958)
Found 45 points (45 unflagged) among 101376 in 0s.
Side-by-side plots of RFI within a portion of L-Band and spectral window 0 of the observation.

We can see that Spw 0 and 2, are the worst affected by RFI. Also, we get the corresponding frequency where the RFI is present, which looks to be 1.31 and 1.33GHz for spectral window 0, and 1.686GHz for spectral window 2. Visiting the VLA L-Band RFI website, we find that the 1310 and 1330 MHz 'birdies' are due to FAA ASR radars, and the one at 1686MHz is most likely due to a GOES weather satellite. We can compare the plots of the FAA ASR radar from the website, with that of spw 0, and see that the birdies (spikes) are practically identical and fall within the same frequencies.

Priori Calibration and Flagging

Normally, before we proceed with further processing, we should check the operator log for the observation to see if there were any issues noted during the run that need to be addressed. The observing log file for this observation can be found here.

The log has various information, including the start/end times for the observation, frequency bands used, weather, baseline information for recently moved antennas, and any outages or issues that may have been encountered. We can see that antenna ea07 may need position corrections (calibration table SNR_G55_10s.pos will fix this), and several antennas are missing an L-Band receiver, including ea06, ea17, ea20, and ea26. We have already removed these antennas from our MS during the run of split2() and can continue with online flagging.

Online Flags

At the time of importing from the SDM-BDF raw data to a MS, we chose to process the online flags from the Flags.xml file to the FLAG_CMD sub-table within the MS. We also created a txt document which includes a list of online flags.

The Flags.xml file holds information of flags created during the observation, such as subreflector issues, and antennas not being on source. We will now want to apply these online flags to the data, but first, let's create a plot of the flags we are about to apply to get an idea of what will be flagged.

# In CASA
flagcmd(vis='SNR_G55_10s.ms', inpmode='table', reason='any', action='plot', plotfile='flaggingreason_vs_time.png')
Online Flags

We can see several instances of online flagging in the created image. Most notably, ea28 and ea08 had some subreflector issues througout the observation. Online flags are instances of possible missing data, including:

  • ANTENNA_NOT_ON_SOURCE

The JVLA antennas have slewing speeds of 20 degrees per minute in azimuth, and 40 degrees per minute in elevation. Some antennas are slower than others, and may take a few more seconds to reach the next source. The antennas can also take a few seconds to settle down due to small oscillations after having slewed.

  • SUBREFLECTOR_ERROR

The FRM (Focus Rotation Mount) located at the apex of the antennas, is responsible for focusing the incoming radio signal to the corresponding receiver. They can at times have issues with their focus and/or rotation axes. Being off target, so much as a few fractions of a degree can result in loss of data, depending on the frequency being observed.

Now that we've plotted the online flags, we will apply them to the MS.

# In CASA
flagcmd(vis='SNR_G55_10s.ms', inpmode='table', reason='any', action='apply', flagbackup=False)

The CASA logger should report the progress as the task applies these flags in chunks. Once it has finished, it will report on the percentage of data that has been flagged.

Shadowed Antennas

Since this is the most compact JVLA configuration, there may be instances where one antenna blocks, or "shadows" another. Therefore, we will run flagdata to remove these data (CASA Cookbook 3.4.2):

# In CASA
flagdata(vis='SNR_G55_10s.ms', mode='shadow', tolerance=0.0, flagbackup=False)

In this particular observation, there does not appear to be much data affected by shadowing, as can be seen in the logger report. One reason why this may be the case, is the antennas were pointed at sources high in elevation.

Zero-Amplitude Data

In addition to shadowing, there may be times during which the correlator writes out pure zero-valued data. In order to remove this bad data, we run flagdata to remove any pure zeroes:

# In CASA
flagdata(vis='SNR_G55_10s.ms', mode='clip', clipzeros=True, flagbackup=False)

Inspecting the logger output which is generated by flagdata shows that there is a small quantity of zero-valued data (4.6%) present in this MS.

Quacking

Now we can utilize the flagdata task one more time in order to run it in quaking mode.

It's common for the array to "settle down" at the start of a scan. Quacking is used to remove data at scan boundaries, and it can apply the same edit to all scans for all baselines. We will forego quacking for this data due to online-flagging having removed the bad data we would otherwise encounter when antennas are not on source. In addition, our science target and phase calibrator J1925+2106 are very close in the sky.

To convince yourself, you can experiment creating a plot of frequency vs. time with plotms for a portion of the observation where the antennas move from the science target, to the phase calibrator. A good choice would be 01:34:00~01:50:27 (scan 39-49).

If we had decided to use the quacking mode, a call to flagdata() would look something like:
flagdata(vis='SN_G55_10s.ms', mode='quack', quackinterval=5.0, quackmode='beg', flagbackup=False)

  • quackmode='beg'  : Data from the start of each scan will be flagged.
  • quackinterval=5.0: Flag the first 5 seconds of every scan.

Backup Data - Flagmanager

Now that we've applied online flags, clipped zero amplitude data, and removed shadowed data, we will create a backup of the MS using flagmanager.

# In CASA
flagmanager(vis='SNR_G55_10s.ms', mode='save', versionname='after_priori_flagging')

From here on forward, if we make a mistake, we can always revert back to this version of the MS by setting mode='restore', and providing the version name we want to restore back to.

Automatic RFI excision

Now that we're done with priori flagging, we can move on to removing some of the RFI present with auto-flagging algorithms used within flagdata. We will employ two algorithms, flagdata (tfcrop) and flagdata (rflag).

TFcrop

Tfcrop is an algorithm that detects outliers in the 2D time-frequency plane, and can operate on un-calibrated data (non bandpass-corrected). Tfcrop will iterate through chunks of time, and undergo several steps in order to find and excise different types of RFI. (CASA Cookbook 3.4.2.7)

Step 1: Detect short-duration RFI spikes (narrow-band and broad-band).
Step 2: Search for time-persistent RFI.
Step 3: Search for time-persistent, narrow-band RFI.
Step 4: Search for low-level wings of very strong RFI.

More details on the algorithm steps can be found on this webpage

We will apply the auto-flagging tfcrop algorithm for each spectral window, one at a time. First, lets plot the corrected data for scan 190, with all spectral windows, so we can compare the data before and after tfcrop.

# In CASA
plotms(vis='SNR_G55_10s.ms', scan='190', antenna='ea24', xaxis='freq', iteraxis='scan',
       yaxis='amp', ydatacolumn='data', plotfile='amp_v_freq_before_tfcrop.png',
       correlation='RR,LL', coloraxis='spw', plotrange=[1.2,2,-0.01,0.25])

Following are a set of flagdata commands which have been found to work reasonably well with these data. Please take some time to play with the parameters and the plotting capabilities. Since these runs set display='both' and action='calculate', the flags are displayed but not actually written to the MS. This allows one to try different sets of parameters before actually applying the flags to the data.

Some representative plots are also displayed. Each column displays an individual polarization product; since we're using all four polarizations, from left to right are RR, RL, LR, and LL. The first row shows the data with current flags applied, and the second includes the flags generated by flagdata. The x-axis is channel number (the spectral window ID is displayed in the top title) and the y-axis of the first two rows is all integrations included in a time "chunk", set by the ntime parameter. These are the data considered by the tfcrop algorithm during its flagging process, and changes in ntime will have some (relatively small) affect on what data are flagged.

Each plot page displays data for a single baseline and time chunk. The buttons at the bottom allow one to step through baseline (backward as well as forward), spw, scan, and field; "Stop Display" will continue the flagging operation without the GUI, and "Quit" aborts the run.

spw 0

# In CASA
flagdata(vis='SNR_G55_10s.ms', mode='tfcrop', spw='0', 
         datacolumn='data', action='calculate', 
         display='both', flagbackup=False)

As we iterate through the different scans, we can see the flagging we can apply, represented by the blue areas. Let's now apply these flags by changing the action parameter.

# In CASA
flagdata(vis='SNR_G55_10s.ms', mode='tfcrop', spw='0', 
         datacolumn='data', action='apply', 
         display='', flagbackup=False)

The logger will report that a little over 41% of the table selection has been flagged. We will move on to spectral window 1.

spw 1

# In CASA
flagdata(vis='SNR_G55_10s.ms', mode='tfcrop', spw='1', 
         datacolumn='data', action='calculate', 
         display='both', flagbackup=False)

flagdata(vis='SNR_G55_10s.ms', mode='tfcrop', spw='1', 
         datacolumn='data', action='apply', 
         display='', flagbackup=False)

The logger will report that almost 28.5% of the table selection has been flagged. This makes sense since this spectral window didn't show much of the RFI present in spectral window 0. Let us now run tfcrop on the two remaining spectral windows, 2 and 3.

File:Corramp vs freq before after tfcrop.gif
Plots of corrected data before and after tfcrop.

spw 2 & 3

# In CASA

flagdata(vis='SNR_G55_10s.ms', mode='tfcrop', spw='2', 
         datacolumn='data', action='apply', 
         display='', flagbackup=False)

flagdata(vis='SNR_G55_10s.ms', mode='tfcrop', spw='3', 
         datacolumn='data', action='apply', 
         display='', flagbackup=False)

We can now use plotms to review the effects of using tfcrop and compare the image to the one created before applying tfcrop. We can see great improvements, especially for spectral window 0 and 2, which had some of the worst RFI.

# In CASA
plotms(vis='SNR_G55_10s.ms', scan='190', antenna='ea24', xaxis='freq', iteraxis='scan', 
       yaxis='amp', ydatacolumn='data', plotfile='amp_v_freq_after_tfcrop.png'
       correlation='RR,LL', coloraxis='spw', plotrange=[1.2,2,-0.01,0.25])

We can now calculate the amount of flagged data so far, in our Measurement Set.

# In CASA
flagInfo = flagdata(vis='SNR_G55_10s.ms', mode='summary')

print("\n %2.1f%% of G55.7+3.4, %2.1f%% of 3C147, and %2.1f%% of J1925+2106 are flagged. \n" % (100.0 * flagInfo['field']['G55.7+3.4']['flagged'] / flagInfo['field']['G55.7+3.4']['total'], 100.0 * flagInfo['field']['0542+498=3C147']['flagged'] / flagInfo['field']['0542+498=3C147']['total'], 100.0 * flagInfo['field']['J1925+2106']['flagged'] / flagInfo['field']['J1925+2106']['total']))

print("Spectral windows are flagged as follows:")

for spw in range(0,4):
     print("SPW %s: %2.1f%%" % (spw, 100.0 * flagInfo['spw'][str(spw)]['flagged'] / flagInfo['spw'][str(spw)]['total']))

The results indicate we have flagged almost 13% of G55.7+3.4. We can now move on to the other auto-flagging algorithm, rflag.

RFlag

In order to get the best possible result from the automatic RFI excision with flagdata (rflag), we will first apply bandpass calibration to the MS. Since the RFI is time-variable, using the phase calibration source to make an average bandpass over the entire observation will mitigate the amount of RFI present in the calculated bandpass. (For the final calibration, we will use the designated bandpass source 3C147; however, since this object was only observed in the last set of scans, it doesn't sample the time variability and would not provide a good average bandpass.)

Since there are likely to be gain variations over the course of the observation, we will run gaincal to solve for an initial set of antenna-based phases over a narrow range of channels. These will be used to create the bandpass solutions. While amplitude variations will have little effect on the bandpass solutions, it is important to solve for these phase variations with sufficient time resolution to prevent decorrelation when vector averaging the data in computing the bandpass solutions.

In order to choose a narrow range of channels for each spectral window which are relatively RFI-free over the course of the observation, we can look at the data with plotms. Note that it's important to only solve for phase using a narrow channel range, since an antenna-specific delay will cause the phase to vary with respect to frequency over the spectral window, perhaps by a substantial amount.

# In CASA
plotms(vis='SNR_G55_10s.ms', scan='30,75,120,165,190,235,303', antenna='ea24', 
       xaxis='channel', yaxis='amp', iteraxis='spw', yselfscale=True, correlation='RR,LL')
  • yselfscale=True: sets the y-scaling to be for the currently displayed spectral window, since some spectral windows have much worse RFI and will skew the scale for others.

Looking at these plots, we can choose appropriate channel ranges for each SPW:

SPW 0: 11-14
SPW 1: 30-33
SPW 2: 32-35
SPW 3: 30-33

Using these channel ranges, we run gaincal to calculate phase-only solutions that will be used as input during our initial bandpass calibration. Remember - the calibration tables we are creating now are so that we can use an automatic RFI flagging algorithm. Our final calibration tables will be generated later, after automated flagging. Here are the inputs for our initial pre-bandpass phase calibration:

# In CASA
gaincal(vis='SNR_G55_10s.ms', caltable='SNR_G55_10s.initPh', field='J1925+2106', solint='int',
        spw='0:11~14,1;3:30~33,2:32~35', refant='ea24', minblperant=3,
        minsnr=3.0, calmode='p', gaintable='SNR_G55_10s.pos')
  • caltable='SNR_G55_10s.initPh': this is the output calibration table that will be written.
  • field='J1925+2106': this is the phase calibrator we will use to calibrate the phases.
  • solint='int': we request a solution for each 10-second integration.
  • spw='0:11~14,1;3:30~33,2:32~35': note the syntax of this selection: a ":" is used to separate the SPW from channel selection, ";" is used to separate within this selection of spectral windows, and "~" is used to indicate an inclusive range.
  • refant='ea24': we have chosen ea24 as the reference antenna after inspecting the antenna position diagram (see above). It is relatively close to, but not directly in, the center of the array, which could be important in D-configuration, since you don't want the reference antenna to have a high probability of being shadowed by nearby antennas.
  • minblperant=3: the minimum number of baselines which must be present to attempt a phase solution.
  • minsnr=3.0: the minimum signal-to-noise a solution must have to be considered acceptable. Note that solutions which fail this test will cause these data to be flagged downstream of this calibration step.
  • calmode='p': perform phase-only solutions.
  • gaintable='SNR_G55_10s.pos': use the antenna position correction for ea07 that we included in the tar file.

Note that a number of solutions do not pass the requirements of the minimum 3 baselines (generating the terminal message "Insufficient unflagged antennas to proceed with this solve.") or minimum signal-to-noise ratio (outputting "n of x solutions rejected due to SNR < 3 ..."). >

Phases per spw for several antennas

We can inspect the resulting calibration table with plotcal. Let's iterate over spectral window for a subset of antennas:

# In CASA
plotcal(caltable='SNR_G55_10s.initPh', xaxis='time', yaxis='phase', iteration='spw', 
        antenna='01~12', plotsymbol='-', plotrange=[-1,-1,-180,180])
  • plotsymbol='-': This will connect the points with a line, and can help in revealing phase jumps, which can be a sign that they are being affected by RFI. Note that a line jumping from -180 degrees to +180 degrees is not a phase jump, but merely the software wrapping the phase 360 degrees.

Spectral window 0 doesn't look too good from about 1:39:04-1:41:22, where several phase jumps can be seen. Use the "Zoom to rect mode" button (rectangle with magnifying glass) to zoom in on the area to get a better view. Spectral window 3 on the other hand looks great, which very stable phases.

Now that we've determined our plots look fairly reasonable, but still require further RFI excision, we will create a time-averaged bandpass solutions for the phase calibration source using the bandpass task.

# In CASA
bandpass(vis='SNR_G55_10s.ms', caltable='SNR_G55_10s.initBP', field='J1925+2106', solint='inf', combine='scan', 
         refant='ea24', minblperant=3, minsnr=10.0, gaintable=['SNR_G55_10s.pos', 'SNR_G55_10s.initPh'],
         interp=['', 'nearest'], solnorm=False)
  • solint='inf', combine='scan': the solution interval of 'inf' will automatically break by scans; this requests that the solution intervals be combined over scans, so that we will get one solution per antenna.
  • gaintable=['SNR_G55_10s.pos', 'SNR_G55_10s.initPh']: we will pre-apply both the antenna position corrections as well as the initial phase solutions.
  • interp=['', 'nearest']: by default, gaincal will use linear interpolation for pre-applied calibration. However, we want the nearest phase solution to be used for a given time.

Again, we can see that a number of solutions have been rejected by our choice of minsnr.

Bandpasses for antennas ea10 - ea19

We may plot the bandpasses with plotcal.

# In CASA
plotcal(caltable='SNR_G55_10s.initBP', xaxis='freq', yaxis='amp',
        iteration='antenna', subplot=331)
  • subplot=331: displays 3x3 plots per screen

Also, we can iterate per spw:

# In CASA
plotcal(caltable='SNR_G55_10s.initBP', xaxis='freq', yaxis='phase',
        iteration='spw', antenna = '1~12', plotsymbol='x', subplot=221)

Let us now apply these calibration tables

# In CASA
applycal(vis='SNR_G55_10s.ms', gaintable=['SNR_G55_10s.pos', 'SNR_G55_10s.initBP'], calwt=False)

This operation will flag data that correspond to flagged solutions, so applycal makes a backup version of the flags prior to operating on the data. Note that running applycal might take a little while.

Now that we have bandpass-corrected data with some RFI flagged out, we will run flagdata in flagdata (rflag) mode (CASA Cookbook 3.4.2.8). Rflag, like tfcrop, is an autoflag algorithm which uses a sliding window statistical filter. Data is iterated through in chunks of time, where statistics are accumulated, and thresholds calculated.

Additional information on the algorithm used in rflag, as well as the statistical details that are undertaken can be found on this webpage (sections 2.1.7).

We will use flagdata with mode='tfcrop', and action='calculate' to first review the amount of data to be flagged. We will also change the datacolumn parameter to 'corrected', since we've applied the bandpass corrections to the MS.

spw 0

# In CASA
flagdata(vis='SNR_G55_10s.ms', mode='rflag', spw='0', datacolumn='corrected', 
         action='calculate', display='both', flagbackup=False)
flagdata/rflag, Default Parameters
flagdata/rflag, Cutoff of 1.5 Sigma

We now run flagdata to calculate and apply these flags for all data in SPW 0. Since this spectral window has more RFI, we are including timedevscale and freqdevscale parameters so as to make the task more sensitive to deviations from the calculated RMS in frequency. The default value is 5.0. Note that this will take a little while.

# In CASA
flagdata(vis='SNR_G55_10s.ms', mode='rflag', spw='0', datacolumn='corrected', 
         freqdevscale=2.5, timedevscale=2.5, action='apply', display='', flagbackup=False)

tget

Although RFlag has done a pretty good job of finding the bad data, some still remains. One way to excise the remaining bad data is to use the mode='extend' feature in flagdata, which can extend flags along a chosen axis. First, we will extend the flags across polarization, so if any one polarization is flagged, all data for that time / channel will be flagged:

# In CASA
flagdata(vis='SNR_G55_10s.ms', mode='extend', spw='0', extendpols=True,
         action='apply', display='', flagbackup=False)

Now, we will extend the flags in time and frequency, using the "growtime" and "growfreq" parameters. For the data here, the rflag algorithm seems most likely to miss RFI which should be flagged along more of the time axis, so we will try with growtime=50.0, which will flag all data for a given channel if more than 50% of that channel's time is already flagged, and growfreq=90.0, which will flag the entire spectrum for an integration if more than 90% of the channels in that integration are already flagged.

# In CASA
flagdata(vis='SNR_G55_10s.ms', mode='extend', spw='0', growtime=50.0, 
         growfreq=90.0, action='apply', display='', flagbackup=False)

spw 1, 2, and 3

Now, let's work on SPW's 1,2, and 3. We've chosen display='both', in order to first review the flags, and decide if too much or too litle is being flagged. We can always click on 'Quit', and decide to change the freqdevscale and timedevscale parameters, as we did with spectral window 0. Note that spectral window two already has these parameters set, as it contains more RFI.

# In CASA
flagdata(vis='SNR_G55_10s.ms', mode='rflag',  spw='1', datacolumn='corrected', 
         freqdevscale=4.0, timedevscale=4.0, action='apply', display='both', flagbackup=False)

flagdata(vis='SNR_G55_10s.ms', mode='extend', spw='1', extendpols=True,
         action='apply', display='', flagbackup=False)

flagdata(vis='SNR_G55_10s.ms', mode='extend', spw='1', growtime=50.0, 
         growfreq=90.0, action='apply', display='', flagbackup=False)


flagdata(vis='SNR_G55_10s.ms', mode='rflag',  spw='2', datacolumn='corrected', 
         freqdevscale=2.5, timedevscale=2.5, action='apply', display='both', flagbackup=False)

flagdata(vis='SNR_G55_10s.ms', mode='extend', spw='2', extendpols=True,
         action='apply', display='', flagbackup=False)

flagdata(vis='SNR_G55_10s.ms', mode='extend', spw='2', growtime=50.0, 
         growfreq=90.0, action='apply', display='', flagbackup=False)


flagdata(vis='SNR_G55_10s.ms', mode='rflag',  spw='3', datacolumn='corrected', 
         freqdevscale=4.0, timedevscale=4.0, action='apply', display='both', flagbackup=False)

flagdata(vis='SNR_G55_10s.ms', mode='extend', spw='3', extendpols=True,
         action='apply', display='', flagbackup=False)

flagdata(vis='SNR_G55_10s.ms', mode='extend', spw='3', growtime=50.0, 
         growfreq=90.0, action='apply', display='', flagbackup=False)

We can now do as before, and use plotms to see how well rflag has been in removing the RFI.

# In CASA
plotms(vis='SNR_G55_10s.ms', scan='30,75,120,165,190,235,303', xaxis='frequency', yaxis='amp', 
ydatacolumn='corrected', iteraxis='scan', correlation='RR,LL', coloraxis = 'spw')

We can also plot amplitude vs. baseline, and look for outliers which we may be able to flag.

# In CASA
plotms(vis='SNR_G55_10s.ms', scan='30,75,120,165,190,235,303', xaxis='baseline', yaxis='amp', 
ydatacolumn='corrected', iteraxis='scan', correlation='RR,LL', coloraxis = 'spw')

It appears that there is one baseline which is consistently higher-amplitude than the others, indicating that it's probably contaminated by RFI. Use the plotms tools to identify this baseline, which turns out to be ea04 and ea16, and is mostly present for spw 0 and 1. Let's flag this baseline:

# In CASA
flagdata(vis='SNR_G55_10s.ms', antenna='ea04&ea16', spw='0,1', flagbackup=False)

Let's run flagdata in summary mode, to inspect how much data we have flagged thus far:

# In CASA
flagInfo = flagdata(vis='SNR_G55_10s.ms', mode='summary')

print("\n %2.1f%% of G55.7+3.4, %2.1f%% of 3C147, and %2.1f%% of J1925+2106 are flagged. \n" % (100.0 * flagInfo['field']['G55.7+3.4']['flagged'] / flagInfo['field']['G55.7+3.4']['total'], 100.0 * flagInfo['field']['0542+498=3C147']['flagged'] / flagInfo['field']['0542+498=3C147']['total'], 100.0 * flagInfo['field']['J1925+2106']['flagged'] / flagInfo['field']['J1925+2106']['total']))

print("Spectral windows are flagged as follows:")

for spw in range(0,4):
     print("SPW %s: %2.1f%%" % (spw, 100.0 * flagInfo['spw'][str(spw)]['flagged'] / flagInfo['spw'][str(spw)]['total']))

So, as a result of the flagging, we have sacrificed almost 30% of the data for G55.7+3.4.

Interactive Flagging

After plotting our data, it's obvious that there is still some amount of RFI present. We can use plotms to interactively flag points which look bad. A tutorial on flagging data interactively through plotms can be found here. Please note that flagging data through plotms will not create a backup, so it's important to use the flagmanager before deciding to mark your regions for flagging purposes.


# In CASA
flagmanager(vis='SNR_G55_10s.ms', mode='save',
            versionname='after_autoflagging_rflag_1')

flagmanager(vis='SNR_G55_10s.ms', mode='restore', 
            versionname='flagdata_1')

plotms(vis='SNR_G55_10s.ms', scan='165', spw='4~5,7~9',
       antenna='ea24', xaxis='freq', yaxis='amp',
       correlation='RR,LL', coloraxis='spw')

The pre-flagging plot is shown on the right. Clearly, a lot of the RFI has been excised. Restore the flags:

# In CASA
flagmanager(vis='SNR_G55_10s.ms', mode='restore', 
            versionname='after_autoflagging_rflag_1')

Other instructive ways to view the data are by baseline and uv-distance. Note that we're plotting all baselines in these plots, rather than just baselines to ea24 as before.

# In CASA
plotms(vis='SNR_G55_10s.ms', scan='30,75,120,165,190,235,303',
       xaxis='baseline', yaxis='amp', spw='4~5,7~9', iteraxis='spw',
       correlation='RR,LL', coloraxis='antenna1')

No particular baselines look bad enough to flag outright, so we will leave this as is. Feel free to do some more flagging if you like. Now, let's plot as a function of uv-distance:

# In CASA
plotms(vis='SNR_G55_10s.ms', scan='30,75,120,165,190,235,303',
       xaxis='uvdist', yaxis='amp', spw='4~5,7~9', iteraxis='spw',
       correlation='RR,LL', coloraxis='antenna1')

Again, nothing really sticks out as obviously in need of flagging. Clearly, there is still some residual RFI left here and there -- however, for the purposes of this tutorial, we will accept the current rflag results and and move on to a little more flagging with tfcrop.


Before moving on, let's create a backup of our data using the flagmanager task as we did before.

# In CASA
flagmanager(vis='SNR_G55_10s.ms', mode='save', 
            versionname='after_autoflagging_tfcrop_1')

We can now begin the task of calibrating our data, and imaging the supernova remnant in part 2.

CASAguides

-- original: ??

--modifications: Lorant Sjouwerman (4.4.0, 2015/07/07)

--modifications: Jose Salcido (4.5.1, 2016/02/16)

Last checked on CASA Version 4.5.1.