Creating a Model for a Resolved Bandpass Calibrator: Difference between revisions

From CASA Guides
Jump to navigationJump to search
No edit summary
No edit summary
Line 53: Line 53:
Now I do a bandpass calibration using the flux calibrator. If your flux calibrator is not strong enough for a good bandpass calibration you may need to average the frequency channels in {{bandpass}} (feature available in CASA 3.4) or using a BPOLY rather than B solution in {{bandpass}}.
Now I do a bandpass calibration using the flux calibrator. If your flux calibrator is not strong enough for a good bandpass calibration you may need to average the frequency channels in {{bandpass}} (feature available in CASA 3.4) or using a BPOLY rather than B solution in {{bandpass}}.


<source lang='python>
<source lang='python'>


# Calibrating the Bandpass Calibrator
# Calibrating the Bandpass Calibrator
Line 212: Line 212:


</source>
</source>
--[[User:Akepley|Akepley]] 12:00, 24 April 2012 (PDT)

Revision as of 15:00, 24 April 2012

This guide details how to create a spatial and spectral model of a resolved bandpass calibator. If your bandpass calibrator is not resolved, you do not need to follow this procedure. You can derive the spectral shape of the calibrator using the output of fluxscale (needs CASA 3.4 or greater) and the routine Spectralindex in Analysis_Utilities. That model can be added to the data using setjy.

First, I define variables used in the calibration.

# Setting parameters
#--------------------

myprefix ='ic342_cband_cont_if1_cal'
myinput = 'ic342_cband_cont_if1.ms'
#myantpostable = '11B-121_1_if1_antpos.cal'
myflagtable = 'precalibration_flags_2'

myrefant = 'ea16'

myfluxcal = '1'
myfluxmod = '3C48_C.im' # remember to change this

mybpasscal = '2'

mybpassimage = myprefix+'_bpasscal'
mybpassmod = [myprefix+'_bpasscal.model.tt0',myprefix+'_bpasscal.model.tt1']
mybpasscell='1.0arcsec'
mybpassimsize = [512,512]
mybpassniters = 1000
mybpassnoise = '6mJy' 
mybpassmask = 'bpasscal_cont_if1.mask' 
mynterms = 2

myspw = '0~7'
myspwapcal = '0~7:20~100'
myspwpcal = '0~7:40~90'

Now I use setjy to get the model for the flux calibrator.

# Setting up Model for Flux calibration
#--------------------------------------

setjy(vis=myinput,
      field=myfluxcal,
      spw=myspw,
      modimage=myfluxmod,
      standard='Perley-Butler 2010',
      scalebychan=True)

Now I do a bandpass calibration using the flux calibrator. If your flux calibrator is not strong enough for a good bandpass calibration you may need to average the frequency channels in bandpass (feature available in CASA 3.4) or using a BPOLY rather than B solution in bandpass.

# Calibrating the Bandpass Calibrator
# -----------------------------------

# phase calibration
myfluxbpphasetable = myprefix + '_flux_bpphase.gcal'

gaincal(vis=myinput,
        caltable=myfluxbpphasetable,
        field=myfluxcal,
        spw=myspwapcal, 
        refant=myrefant,
        calmode='p',
        solint='int',
        gaintable=[],
        gaincurve=True)

# amplitude calibration
myfluxbpamptable = myprefix + '_flux_bpamp.gcal'

gaincal(vis=myinput,
        caltable=myfluxbpamptable,
        field=myfluxcal,
        spw=myspwapcal, 
        refant=myrefant,
        calmode='a',
        solint='int',
        gaintable=[myfluxbpphasetable],
        gaincurve=True)

# determining the bandpass calibration
myfluxbpasstable = myprefix + '_flux_bandpass.bcal'

bandpass(vis=myinput,
         caltable=myfluxbpasstable,
         field=myfluxcal,
         refant=myrefant,
         solint='inf',
         combine='scan',
         solnorm=False, # for calibration
         bandtype='B',
         gaintable=[myfluxbpphasetable,myfluxbpamptable],
         gaincurve=True)


Now we continue with the calibration and get the phases and amplitudes for the flux and bandpass calibrators after applying the initial bandpass calibration.

# Phase Calibration 
# ------------------

myscanphasetable = myprefix + '_flux_scanphase.gcal'

gaincal(vis=myinput, 
        caltable=myscanphasetable, 
        field=mybpasscal+','+myfluxcal,
        spw=myspwapcal,
        refant=myrefant,
        calmode='p', 
        solint='int',
        gaintable=[myfluxbpasstable],
        gaincurve=T)

# Amplitude Calibration 
# ----------------------


myamptable = myprefix + '_flux_amp.gcal'

gaincal(vis=myinput, 
        caltable=myamptable, 
        field=mybpasscal+','+myfluxcal,
        spw=myspwapcal,
        refant=myrefant,
        calmode='a', 
        solint='int', # or is it 'inf'
        gaintable=[myfluxbpasstable,myscanphasetable],
        gaincurve=T)

Now we determine the flux of the bandpass calibration from the flux calibrator.

# Flux calibration
# ----------------

myfluxtable = myprefix + '_flux_flux.cal'

fluxscale(vis=myinput,
          caltable=myamptable,
          fluxtable=myfluxtable,
          reference=myfluxcal,
          transfer=mybpasscal)

Finally, we apply the initial calibration to the flux and bandpass calibrators.

# Applying calibration
# --------------------


# bandpass calibrator 
applycal(vis=myinput,
         field=mybpasscal, 
         gaintable=[myfluxbpasstable, myscanphasetable, myfluxtable], 
         gainfield=[myfluxcal, mybpasscal, mybpasscal], 
         gaincurve=T, 
         calwt=F,
         flagbackup=False)

# flux calibrator 
applycal(vis=myinput,
         field=myfluxcal, 
         gaintable=[myfluxbpasstable,myscanphasetable,myfluxtable], 
         gainfield=[myfluxcal, myfluxcal, myfluxcal], 
         gaincurve=T, 
         calwt=F,
         flagbackup=False)

We image the bandpass calibrator to create a model. If you are just going to apply that model in the data calibration in the rest of your calibration, you're done!

# Calculating the Slope of the Bandpass Calibrator
# ------------------------------------------------

clean(vis=myinput,imagename=mybpassimage,field=mybpasscal,mode='mfs',nterms=mynterms,cell=mybpasscell,imsize=mybpassimsize,niter=mybpassniters,interactive=False, usescratch=True, mask=mybpassmask,threshold=mybpassnoise)

If you wanted to use the model elsewhere, you need to fill the model for the bandpass calibrator. An example of this would be using the model of the bandpass calibrator from broad band continuum spectral windows to calibrate narrower spectral windows.

# Putting in a model of the bandpass calibrator
# ---------------------------------------------

# Not always necessary. See above.

# This assumes a model exists of the bandpass calibrator.
ft(vis=myinput,
   field=mybpasscal,
   model=mybpassmod,
   nterms=mynterms)

--Akepley 12:00, 24 April 2012 (PDT)