Test-NGC3256 Band3 - Calibration

From CASA Guides
Revision as of 15:26, 23 November 2011 by Mzwaan (talk | contribs)
Jump to navigationJump to search


Overview

This portion of the NGC3256Band3 CASA Guide will cover the calibration of the raw visibility data. To skip to the imaging portion of the guide, see: NGC3256 Band3 - Imaging.

If you haven't already downloaded the raw data, you may do that now by clicking on the region closest to your location and downloading the file named 'NGC3256_Band3_UnCalibratedMSandTablesForReduction.tgz':

North America

Europe

East Asia

Once the download has finished, unpack the file:

# In a terminal outside CASA
tar -xvzf NGC3256_Band3_UnCalibratedMSandTablesForReduction.tgz

cd NGC3256_Band3_UnCalibratedMSandTablesForReduction

# Start CASA
casapy

The data have already been converted to CASA Measurement Set (MS) format using the CASA task importasdm. Accompanying the data are some basic calibration tables you will need for the following reduction, as well as the *.ms.flagversions files that are automatically generated by importasdm.

Initial Inspection and A priori Flagging

We will eventually concatenate the six datasets used here into one large dataset. However, we will keep them separate for now, as some of the steps to follow require individual datasets (specifically, the application of the Tsys and WVR tables). We therefore start by defining an array "basename" that includes the names of the six files in chronological order. This will simplify the following steps by allowing us to loop through the files using a simple for-loop in python. Remember that if you log out of CASA, you will have to re-issue this command. We will remind you of this in the relevant sections by repeating the command at the start.

# In CASA
basename=['uid___A002_X1d54a1_X5','uid___A002_X1d54a1_X174','uid___A002_X1d54a1_X2e3',
'uid___A002_X1d5a20_X5','uid___A002_X1d5a20_X174','uid___A002_X1d5a20_X330']

The usual first step is then to get some basic information about the data. We do this using the task listobs, which will output a detailed summary of each dataset supplied.

# In CASA
for name in basename:
        listobs(vis=name+'.ms')

Note that after cutting and pasting a for-loop you often have to press return several times to execute. The output will be sent to the CASA logger. You will have to scroll up to see the individual output for each of the six datasets. Here is an example of the most relevant output for the first file in the list.

Fields: 3
  ID   Code Name         RA            Decl           Epoch   SrcId nVis   
  0    none 1037-295     10:37:16.0790 -29.34.02.8130 J2000   0     38759  
  1    none Titan        00:00:00.0000 +00.00.00.0000 J2000   1     16016  
  2    none NGC3256      10:27:51.6000 -43.54.18.0000 J2000   2     151249 
  (nVis = Total number of time/baseline visibilities per field) 
Spectral Windows:  (9 unique spectral windows and 2 unique polarization setups)
  SpwID  #Chans Frame Ch1(MHz)    ChanWid(kHz)TotBW(kHz)  Ref(MHz)    Corrs   
  0           4 TOPO  184550      1500000     7500000     183300      I   
  1         128 TOPO  113211.988  15625       2000000     113204.175  XX  YY  
  2           1 TOPO  114188.55   1796875     1796875     113204.175  XX  YY  
  3         128 TOPO  111450.813  15625       2000000     111443      XX  YY  
  4           1 TOPO  112427.375  1796875     1796875     111443      XX  YY  
  5         128 TOPO  101506.187  15625       2000000     101514      XX  YY  
  6           1 TOPO  100498.375  1796875     1796875     101514      XX  YY  
  7         128 TOPO  103050.863  15625       2000000     103058.675  XX  YY  
  8           1 TOPO  102043.05   1796875     1796875     103058.675  XX  YY  
Sources: 48
  ID   Name         SpwId RestFreq(MHz)  SysVel(km/s) 
  0    1037-295     0     -              -            
  0    1037-295     9     -              -            
  0    1037-295     10    -              -            
  0    1037-295     11    -              -            
  0    1037-295     12    -              -            
  0    1037-295     13    -              -            
  0    1037-295     14    -              -            
  0    1037-295     15    -              -            
  0    1037-295     1     -              -            
  0    1037-295     2     -              -            
  0    1037-295     3     -              -            
  0    1037-295     4     -              -            
  0    1037-295     5     -              -            
  0    1037-295     6     -              -            
  0    1037-295     7     -              -            
  0    1037-295     8     -              -            
  1    Titan        0     -              -            
  1    Titan        9     -              -            
  1    Titan        10    -              -            
  1    Titan        11    -              -            
  1    Titan        12    -              -            
  1    Titan        13    -              -            
  1    Titan        14    -              -            
  1    Titan        15    -              -            
  1    Titan        1     -              -            
  1    Titan        2     -              -            
  1    Titan        3     -              -            
  1    Titan        4     -              -            
  1    Titan        5     -              -            
  1    Titan        6     -              -            
  1    Titan        7     -              -            
  1    Titan        8     -              -            
  2    NGC3256      0     -              -            
  2    NGC3256      9     -              -            
  2    NGC3256      10    -              -            
  2    NGC3256      11    -              -            
  2    NGC3256      12    -              -            
  2    NGC3256      13    -              -            
  2    NGC3256      14    -              -            
  2    NGC3256      15    -              -            
  2    NGC3256      1     -              -            
  2    NGC3256      2     -              -            
  2    NGC3256      3     -              -            
  2    NGC3256      4     -              -            
  2    NGC3256      5     -              -            
  2    NGC3256      6     -              -            
  2    NGC3256      7     -              -            
  2    NGC3256      8     -              -            
Antennas: 7:
  ID   Name  Station   Diam.    Long.         Lat.         
  0    DV04  J505      12.0 m   -067.45.18.0  -22.53.22.8  
  1    DV06  T704      12.0 m   -067.45.16.2  -22.53.22.1  
  2    DV07  J510      12.0 m   -067.45.17.8  -22.53.23.5  
  3    DV08  T703      12.0 m   -067.45.16.2  -22.53.23.9  
  4    DV09  N602      12.0 m   -067.45.17.4  -22.53.22.3  
  5    PM02  T701      12.0 m   -067.45.18.8  -22.53.22.2  
  6    PM03  J504      12.0 m   -067.45.17.0  -22.53.23.0 

This output shows that three fields were observed: 1037-295, Titan, and NGC3256. Field 0 (1037-295) will serve as the gain calibrator and bandpass calibrator; field 1 (Titan) will serve as the flux calibrator; and field 2 (NGC3256) is, of course, the science target.

Note that there are more than four SpwIDs even though the observations were set up to have four spectral windows. The spectral line data themselves are found in spectral windows 1,3,5,7, which have 128 channels each. The first one (spw 1) is centered on the CO(1-0) emission line in the galaxy NGC 3256 and is our highest frequency spectral window. There is one additional spectral window (spw 3) in the Upper Side Band (USB), and there are two spectral windows (spw 5 and 7) in the Lower Side Band (LSB). These additional spectral windows are used to measure the continuum emission in the galaxy, and may contain other emission lines as well.

Spectral windows 2,4,6,8 contain channel averages of the data in spectral windows 1,3,5,7, respectively. These are not useful for the offline data reduction. Spectral window 0 contains the WVR data. You may notice that there are additional SpwIDs listed in the "Sources" section which are not listed in the "Spectral Windows" section. These spectral windows are reserved for the WVRs of each antenna (seven in our case). At the moment, all WVRs point to spw 0, which contains nominal frequencies. The additional spectral windows (spw 9-15) are therefore not used and can be ignored.

Another important thing to note is that the position of Titan is listed as 00:00:00.0000 +00.00.00.0000. This is due to the fact that for ephemeris objects, the positions are currently not stored in the asdm. This will be handled correctly in the near future, but at present, we have to fix this offline. We will correct the coordinates below by running the procedure fixplanets, which takes the position from the pointing table.

The final column of the listobs output in the logger (not shown above) gives the scan intent. This information is used later to flag the pointing scans and the hot and ambient load calibration scans, using scan intent as a selection option. Also these intents will be used in the future for pipeline processing.

Seven antennas were used for the dataset listed above. Note that numbering in python always begins with "0", so the antennas have IDs 0-6. To see what the antenna configuration looked like at the time of the this observation, we will use the task plotants.

plotants output
# In CASA
plotants(vis=basename[0]+'.ms', figfile=basename[0]+'_plotants.png')

This will plot the antenna configuration on your screen as well as save it under the specified filename for future reference. This will be important later on when we need to choose a reference antenna, since the reference antenna should be close to the center of the array (as well as stable and present for the entire observation).

If you repeat the plotants command for the other five datasets, you will see that there is an additional antenna (DV10) present on the second day of observations. Other than that, the configuration stays constant during the course of the observations.