VLBA AIPS ans CASA Guide: Difference between revisions
Line 173: | Line 173: | ||
=== Instrumental Delay Correction === | === Instrumental Delay Correction === | ||
<b>NOTE: </b>Many VLBA users are likely familiar with the VLBAUTIL procedure VLBAPCOR and the associated AIPS task PCCOR, which use the pulse-cal tone information from the VLBA to correct for the instrumental delay. CASA does not currently have a means of working with the pulse-cal tones, so it cannot use this functionality. | <b>NOTE: </b>Many VLBA users are likely familiar with the VLBAUTIL procedure VLBAPCOR and the associated AIPS task PCCOR, which use the pulse-cal tone information from the VLBA to correct for the instrumental delay. CASA does not currently have a means of working with the pulse-cal tones, so it cannot use this functionality. In order to do a direct comparison between AIPS and CASA, we will use the VLBAMPCL procedure, which runs FRING and CLCAL. Using the pulse-cal tones in CASA is an area of active development for the NRAO and JIVE CASA software engineers and scientists. | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 189: | Line 189: | ||
<b>IMPORTANT</b> | <b>IMPORTANT</b> | ||
Note that in the CASA calibration process, the gain curve and system temperature calibration tables have been applied at this point. That means the the amplitude values are now in Janskys. The AIPS amplitude calibration is not done until after the bandpass correction. | Note that in the CASA calibration process, the gain curve and system temperature calibration tables have been applied at this point. That means the the amplitude values are now in Janskys. The AIPS amplitude calibration is not done until after the bandpass correction. | ||
=== Global Fringe Fitting === | === Global Fringe Fitting === |
Revision as of 16:43, 30 March 2023
The Guide walks through the calibration of the data set used in the VLBA Basic Phase-referencing Calibration and Imaging tutorial. It presents the steps that should be taken to calibrate the data using both AIPS and CASA. In several cases the AIPS VLBAUTIL procedures are shown, as well as the AIPS tasks that those procedures call. To use the VLBAUTIL procedures, first enter 'run vlbautil' in AIPS to initialize all of the procedures.
Note that some steps are performed in different order depending on whether you are using AIPS or CASA. Also, be aware that not all tasks in AIPS have an equivalent task in CASA (yet).
To follow along with this Guide, users should download the TL016B.idifits data set used in the VLBA Basic Phase-referencing Calibration and Imaging tutorial.
Initial Calibration
This first section shows the steps for the initial calibration (instrumental delay, fringe fitting, bandpass correction).
Loading Data
Both AIPS and CASA need to take the FITS-IDI file and convert it into a format they can use. AIPS uses the UVDATA format, and CASA uses the Measurement Set (MS) format.
VLBAUTIL Procedure | AIPS Task(s) | CASA Task(s) |
---|---|---|
VLBALOAD datain 'TL016B.idifits outname 'TL016B' |
FITLD datain 'TL016B.idifits outname 'TL016B' clint 0.25 |
importfitsidi fitsidifile='TL016B.idifits' vis='tl018b.ms' constobsiid=True scanreindexgap_s=15 |
Observation Summary
Printing a summary of the observation is often useful for identifying the fringe finder, bandpass calibrator, phase reference calibrator, and science target. It is also useful for locating a good time range to use for the instrumental delay correction.
VLBAUTIL Procedure | AIPS Task(s) | CASA Task(s) |
---|---|---|
VLBASUMM inname 'TL016B' inclass 'UVDATA' inseq 1 docrt 132 |
PRTAN inname 'TL016B' inclass 'UVDATA' inseq 1 docrt 132 dotv 1 |
listobs vis='tl016b.ms' |
LISTR inname 'TL016B' inclass 'UVDATA' inseq 1 optype 'scan' |
NOTE: To have listobs save the osbervation summary to a file called 'tl018b_listobs.txt', set listfile='tl016b_listobs.txt'.
Quacking the Data
"Quacking" refers to flagging the beginning and/or end of each scan in an observation. This is a completely optional step, but it is often useful for VLBA data.
Flag the first 4 seconds of each scan.
VLBAUTIL Procedure | AIPS Task(s) | CASA Task(s) |
---|---|---|
none | QUACK datain 'TL016B.idifits inclass 'UVDATA' inseq 1 opcode 'BEG' aparm 0 4/60 0 |
flagdata vis='tl018b.ms' mode='quack' quackmode='beg' quackinterval=4.0 quackincrement=True |
Flag the last 4 seconds of each scan.
VLBAUTIL Procedure | AIPS Task(s) | CASA Task(s) |
---|---|---|
none | QUACK datain 'TL016B.idifits inclass 'UVDATA' inseq 1 opcode 'ENDB' aparm 0 4/60 0 |
flagdata vis='tl018b.ms' mode='quack' quackmode='endb' quackinterval=4.0 quackincrement=True |
Automated Flagging
The VLBA Basic Phase-referencing Calibration and Imaging tutorial shows users how to run the TFCrop automated flagging routine on the data to remove some time-based RFI. AIPS does not have an equivalent task to TFCrop, but users can opt to user the RFLAG automated flagging after the bandpass corrections have been applied (later in the calibration).
VLBAUTIL Procedure | AIPS Task(s) | CASA Task(s) |
---|---|---|
none | none | flagdata vis='tl016b.ms' mode='tfcrop' datacolumn='data' timecutoff=4.0 flagdimension='time' action='calculate' display='both' |
With action='calculate', no flags will be generated. Instead, you should just verify that the TFCrop flagging is doing what you expect. You can always click 'Quit' and adjust the timecutoff parameter as you see fit.
Once you are satisfied that the program is going to flag things appropraitely, set action='apply' and run it again.
VLBAUTIL Procedure | AIPS Task(s) | CASA Task(s) |
---|---|---|
none | none | flagdata vis='tl016b.ms' mode='tfcrop' datacolumn='data' timecutoff=4.0 flagdimension='time' action='apply' display='both' |
Double check that the flags look appropriate, then click "Stop Display" to have the TFCrop routine set and apply the flags.
For some obesrations, especially at frequencies below 4 GHz, it will be useful to have TFCrop look for RFI in both frequency and time. In this case, set fladimension='freqtime' (the default), and freqcutoff=3.0. Check that the flags look appropriate and adjust the freqcutoff parameter as necessary before applying the flags.
Flagging "By Hand"
The VLBA Basic Phase-referencing Calibration and Imaging tutorial includes a significant amount of additional flagging. AIPS users should start their flagging by using the graphical tools FTFLG, SPFLG, and TVFLG. CASA does not have equivalent graphical flagging tools. CASA users can try using the viewer to display the data in a manner similar to SPFLG and TVFLG, as described in Section 2.1.2 of VLBA Scientific Memo #38. However, the CASA viewer is not very reliable, especially for creating flags.
Fortunately, both AIPS and CASA have tasks for creating flags without a graphical interface. Here are examples of flagging some of the data:
Flag all baselines to HN on final scan of 4C39.5
VLBAUTIL Procedure | AIPS Task(s) | CASA Task(s) |
---|---|---|
none | UVFLG datain 'TL016B.idifits inclass 'UVDATA' inseq 1 timerange 0 12 13 23 0 12 16 53 antennas 3 opcode 'FLAG' reason 'HNLOW' |
flagdata vis='tl018b.ms' mode='manual' field='4C39.25' antenna='HN' scan='181' |
NOTE: Entering a short note in the reason adverb in UVLFG can be useful if the flags need to be undone at some point.
Flag the BR-PT baseline on scan 10
VLBAUTIL Procedure | AIPS Task(s) | CASA Task(s) |
---|---|---|
none | UVFLG datain 'TL016B.idifits inclass 'UVDATA' inseq 1 timerange 0 6 30 57 0 6 31 37 antennas 1 9 0 opcode 'FLAG' reason 'BRPT10HOT' |
flagdata vis='tl018b.ms' mode='manual' field='J1154+6022' antenna='BR&PT' scan='10' |
To see all the flags that are recommended for this observation, refer to the VLBA Basic Phase-referencing Calibration and Imaging tutorial.
Total Electron Content Correction
To make the TEC correction using TECOR, you will first need to download the appropriate TEC file from ftp://gdc.cddis.eosdis.nasa.gov/gps/products/ionex/. The VLBATECR procedure will download the necessary file automatically.
VLBAUTIL Procedure | AIPS Task(s) | CASA Task(s) |
---|---|---|
VLBATECR inname 'TL016B' inclass 'UVDATA' inseq 1 |
TECOR inname 'TL016B' inclass 'UVDATA' inseq 1 aparm 1 0 infile ' tec file ' |
no equivalent CASA task yet |
NOTE: Do not use the tec_maps tool with VLBA data. It does not work properly for VLBI observations.
Earth Orientation Parameter Correction
To make the EOP correction using CLCOR, you will first need to download the appropriate file from ftp://cddis.gsfc.nasa.gov/vlbi/gsfc/ancillary/solve_apriori/usno_finals.erp. The VLBAEOPS procedure will download the necessary file automatically.
VLBAUTIL Procedure | AIPS Task(s) | CASA Task(s) |
---|---|---|
VLBAEOPS inname 'TL016B' inclass 'UVDATA' inseq 1 |
CLCOR inname 'TL016B' inclass 'UVDATA' inseq 1 opcode 'eops' infile ' eop file ' |
no equivalent CASA task yet |
Sampler Corrections
VLBAUTIL Procedure | AIPS Task(s) | CASA Task(s) |
---|---|---|
VLBACCOR inname 'TL016B' inclass 'UVDATA' inseq 1 |
ACCOR inname 'TL016B' inclass 'UVDATA' inseq 1 solint -0.5 |
accor vis='tl016b.ms' caltable='tl016b.accor' solint='30s' |
SNSMO inname 'TL016B' inclass 'UVDATA' inseq 1 inver 0 samptype 'mwf' smotype 'ampl' cparm 0.5 0 0 0 0 1 outvers 0 |
smoothcal vis='tl016b.ms' tablein='tl016b.accor' caltable='tl016b_smooth.accor' smoothtype='median' smoothtime=1800.0 | |
CLCAL inname 'TL016B' inclass 'UVDATA' inseq 1 opcode 'cali' interp 'self' snver 0 dobalnk -1 gainver 0 gainuse 0 |
applycal vis='tl016b.ms' gaintable=['tl016b_smooth.accor'] interp=['nearest'] parang=True |
A Priori Calibration
When calibrating VLBA data in CASA, it is usual to generate the a priori calibration tables at this point: gain curve and system temperature. This step is unnecessary in AIPS because the gain curve (GC) and system temperature (TY) tables are created automatically with FITLD or VLBALOAD.
Gain Curve
VLBAUTIL Procedure | AIPS Task(s) | CASA Task(s) |
---|---|---|
none, done in VLBALOAD | none, done in FITLD | gencal vis='tl018b.ms' caltable='tl016b.gcal' caltype='gc' |
System Temperature
VLBAUTIL Procedure | AIPS Task(s) | CASA Task(s) |
---|---|---|
none, done in VLBALOAD | none, done in FITLD | gencal vis='tl018b.ms' caltable='tl016b.tsys' caltype='tsys' uniform=False |
Instrumental Delay Correction
NOTE: Many VLBA users are likely familiar with the VLBAUTIL procedure VLBAPCOR and the associated AIPS task PCCOR, which use the pulse-cal tone information from the VLBA to correct for the instrumental delay. CASA does not currently have a means of working with the pulse-cal tones, so it cannot use this functionality. In order to do a direct comparison between AIPS and CASA, we will use the VLBAMPCL procedure, which runs FRING and CLCAL. Using the pulse-cal tones in CASA is an area of active development for the NRAO and JIVE CASA software engineers and scientists.
VLBAUTIL Procedure | AIPS Task(s) | CASA Task(s) |
---|---|---|
VLBAMPCL inname 'TL016B' inclass 'UVDATA' inseq 1 timerang 0 9 17 0 0 9 18 0 calsour '4C39.25' refant 2 opcode 'CALP' |
FRING inname 'TL016B' inclass 'UVDATA' inseq 1 docal 1 gainuse 0 timerang 0 9 17 0 0 9 18 0 solint 0 calsour '4C39.25' refant 2 aparm(1) 2 dparm(1) 1 dparm(8) 1 snver 0 |
fringefit vis='tl016b.ms' caltable='tl016b.sbd' field='4C39.25' timerange='09:17:00~09:18:00' solint='inf' zerorates=True refant='FD' minsnr=10 gaintable=['tl016b_smooth.accor', 'tl016b.gcal', 'tl016b.tsys'] interp=['nearest', 'nearest', 'nearest,nearest'] parang=True |
CLCAL inname 'TL016B' inclass 'UVDATA' inseq 1 timer 0 interp '2pt' snver 0 refant 2 calsour '4C39.25' opcode 'CALP' gainver 0 gainuse 0 |
applycal vis='tl016b.ms' gaintable=['tl016b_smooth.accor', 'tl016b.gcal', 'tl016b.tsys', 'tl016b.sbd'] interp=['nearest', 'nearest', 'nearest,nearest', 'nearest'] parang=True |
IMPORTANT Note that in the CASA calibration process, the gain curve and system temperature calibration tables have been applied at this point. That means the the amplitude values are now in Janskys. The AIPS amplitude calibration is not done until after the bandpass correction.
Global Fringe Fitting
The VLBAUTIL package contains 2 methods for doing the global fringe fit:
- VLBAFRNG does a fringe fit on every source in the observation
- VLBAFRGP does a fringe fit on the phase-reference calibrator(s) and transfers those solutions to the science target(s)
This observation required phase referencing, so we will use the VLBAFRGP method.
VLBAUTIL Procedure | AIPS Task(s) | CASA Task(s) |
---|---|---|
VLBAFRGP inname 'TL016B' inclass 'UVDATA' inseq 1 calsour '4C39.25','J1154+6022' gainuse 0 refant 2 search 9 5 4 8 7 3 solint 0.5 sources '4C39.25','J1154+6022','J1203+6031', interpol '2pt' |
FRING inname 'TL016B' inclass 'UVDATA' inseq 1 calsour '4C39.25','J1154+6022' docal 1 gainuse 0 refant 2 search 9 5 4 8 7 3 solint 0.5 snver 0 |
fringefit vis='tl016b.ms' caltable='tl016b.mbd' field='4C39.25, J1154+6022' solint='30s' minsnr=5 zerorates=False refant='FD,PT,LA,KP,OV,NL,HN' gaintable=['tl016b_smooth.accor', 'tl016b.gcal', 'tl016b.tsys', 'tl016b.sbd'] interp=['nearest', 'nearest', 'nearest,nearest', 'nearest'] parang=True |
CLCAL inname 'TL016B' inclass 'UVDATA' inseq 1 timer 0 interp '2pt' snver 0 refant 2 calsour '4C39.25','J1154+6022' opcode 'CALP' gainver 0 gainuse 0 |
applycal vis='tl016b.ms' gaintable=['tl016b_smooth.accor', 'tl016b.gcal', 'tl016b.tsys', 'tl016b.sbd', 'tl016b.mbd'] interp=['nearest', 'nearest', 'nearest,nearest', 'nearest', 'linear'] parang=True |
Bandpass Correction
VLBAUTIL Procedure | AIPS Task(s) | CASA Task(s) |
---|---|---|
VLBABPSS inname 'TL016B' inclass 'UVDATA' inseq 1 calsour '4C39.25' refant 2 |
BPASS inname 'TL016B' inclass 'UVDATA' inseq 1 calsour '4C39.25' refant 2 docal 1 ginause 0 solint -1 bpassprm(5) 1 bpassprm(9) 1 bpassprm(10) 6 |
bandpass vis='tl016b.ms' caltable='tl016b.bpass' field='4C39.25' solint='inf' refant='FD' solnorm=True bandtype='B' gaintable=['tl016b_smooth.accor', 'tl016b.gcal', 'tl016b.tsys', 'tl016b.sbd', 'tl016b.mbd'] interp=['nearest', 'nearest', 'nearest,nearest', 'nearest', 'linear'] parang=True) |
applycal vis='tl016b.ms' gaintable=['tl016b_smooth.accor', 'tl016b.gcal', 'tl016b.tsys', 'tl016b.sbd', 'tl016b.mbd', 'tl016b.bpass'] interp=['nearest', 'nearest', 'nearest,nearest', 'nearest', 'linear', 'linear,linear'] parang=True |
NOTE: In AIPS, you do not need to apply the bandpass correction with CLCAL; you simply need to set doband=1 in all subsequent calibration steps.
Final Amplitude Calibration
VLBAUTIL Procedure | AIPS Task(s) | CASA Task(s) |
---|---|---|
VLBAAMP inname 'TL016B' inclass 'UVDATA' inseq 1 |
ACSCL inname 'TL016B' inclass 'UVDATA' inseq 1 docal 1 gainuse 0 doband 1 bpver 1 solint -2 |
accor vis='tl016b.ms' spw='*:7~121' caltable='tl016b.acscl' solint='2min' gaintable=['tl016b_smooth.accor', 'tl016b.sbd', 'tl016b.mbd', 'tl016b.bpass'] interp=['nearest', 'nearest', 'linear', 'linear,linear'] |
SNSMO inname 'TL016B' inclass 'UVDATA' inseq 1 samptype 'mwf' doblank -1 smotype 'ampl' cparm 0.5 0 0 0 0 1 inver 0 outver 0 |
smoothcal vis='tl016b.ms' tablein='tl016b.acscl' caltable='tl016b_smooth.acscl' smoothtype='median' smoothtime=1800.0 | |
CLCAL inname 'TL016B' inclass 'UVDATA' inseq 1 opcode 'cali' interpol 'self' snver 0 doblank -1 gianver 0 gainuse 0 |
applycal vis='tl016b.ms' gaintable=['tl016b_smooth.accor', 'tl016b.gcal', 'tl016b.tsys', 'tl016b.sbd', 'tl016b.mbd', 'tl016b.bpass', 'tl016b_smooth.acscl'] interp=['nearest', 'nearest', 'nearest,nearest', 'nearest', 'linear', 'linear,linear', 'nearest'] parang=True | |
APCAL inname 'TL016B' inclass 'UVDATA' inseq 1 tyver 0 gcver 0 snver 0 |
done with gencal in the A Priori Calibration section above | |
CLCAL inname 'TL016B' inclass 'UVDATA' inseq 1 opcode 'cali' interp 'self' snver 0 doblank -1 gainver 0 gainuse 0 |
already applied above |
IMPORTANT: When doing the final accor step in CASA, DO NOT apply the gain curve or system temperatures!
Parallactic Angle Correction
VLBAUTIL Procedure | AIPS Task(s) | CASA Task(s) |
---|---|---|
VLBAPANG inname 'TL016B' inclass 'UVDATA' inseq 1 |
CLCOR inname 'TL016B' inclass 'UVDATA' inseq 1 gainver 0 gainuse 0 opcode 'pang' clcorprm 1 0 |
already done by setring parang=True in applycal, fringefit, and bandpass |
Split the Calibrated Data Into a New File
At this point, it is good practice to apply all the calibration and split the calibrated data into a new file. It is usually a good idea to drop any of the edge channels that look bad, or that were not used in the final amplitude calibration step (VLBACSL, ACSCL, etc.).
In AIPS, you will get a separate file for each source you include in the sources adverb. If you leave sources blank, it will split out each source in the obsevration.
In CASA, you will create a new MS file with all of the sources you include in the field variable. Also, you can drop the autocorrelations from the new file by setting antennas='*&*'.
VLBAUTIL Procedure | AIPS Task(s) | CASA Task(s) |
---|---|---|
none | SPLIT inname 'TL016B' inclass 'UVDATA' inseq 1 sources 'J1154+6022','J1203+6031' bchan 8 echan 122 docal 1 gainuse 0 doband 1 bpver 1 outclass 'split1' |
split vis='tl016b.ms' outputvis='tl016b_cal1.ms' field='J1154+6022,J1203+6031' spw='*:7~121' antenna='*&*' datacolumn='corrected' |
Self-Calibration Steps
This sections covers the steps needed to perform phase and amplitude self-calibration of the dataset.
NOTE: The VLBAUTIL procedures do not include self-calibration options, so the following subsections will only include AIPS tasks and the equivalent CASA tasks.
Imaging the Phase Reference Calibrator
The first step in self-calibration is to build a model of the phase reference calibrator with an imaging tool.
AIPS Task(s) | CASA Task(s) |
---|---|
IMAGR inname 'J1154+6022' inclass 'SPLIT1' inseq 1 sources 'J1154+6022' stokes 'i' cellsize 0.0002 imsize 512 robust 5 niter 1000 dotv 1 |
tclean vis='tl016b_cal1.ms' field='J1154+6022' imagename='J1154_sc1' imsize=[640], cell=['0.2mas'] stokes='I' deconvolver='clark' weighting='natural' niter=1000 interactive=True savemodel='modelcolumn' |
Phase Self-Calibration
Now that we have a model of the calibrator, we will make corrections to the phases based on that model.
AIPS Task(s) | CASA Task(s) |
---|---|
CALIB inname 'TL016B' inclass 'UVDATA' inseq 1 calsour 'J1154+6022' docal 1 gainuse 0 doband 1 bpver 1 in2name 'J1154+6022' in2class 'icl001' inseq 1 refant 2 solmode 'p' solint 20/60 cmethod 'dft' aparm 3 0 |
gaincal vis='tl016b_cal1.ms' field='J1154+6022' caltable='tl016b_cal1.dcal' solint='inf' refant='FD' minblperant=3 gaintype='K' calmode='p' parang=False |
gaincal vis='tl016b_cal1.ms'Mbr/>field='J1154+6022' caltable='tl016b_cal1.pcal' solint='20s' refant='FD' minblperant=3 gaintype='G' calmode='p' parang=False | |
CLCAL inname 'TL016B' inclass 'UVDATA' inseq 1 opcode 'calp' interp '2pt' snver 0 doblank -1 gainver 0 gainuse 0 |
applycal vis='tl016b_cal1.ms' field='J1154+6022' gaintable=['tl016b_cal1.dcal','tl016b_cal1.pcal'] interp=['linear','linear'] parang=False |
NOTE: In CASA, we first perform a delay self-calibration using solint='inf' and gaintype='K'. Then, we perform the phase self-calibration using solint='20s' and gaintype='G'.
New Image of Calibrator
Once the phase calibration has been improved, it is time to make a new (hopefully nicer) image.
AIPS Task(s) | CASA Task(s) |
---|---|
IMAGR inname 'J1154+6022' inclass 'SPLIT1' inseq 1 sources 'J1154+6022' stokes 'i' cellsize 0.0002 imsize 512 robust 5 niter 1000 dotv 1 |
tclean vis='tl016b_cal1.ms' field='J1154+6022' imagename='J1154_sc2' imsize=[640] cell=['0.2mas'] stokes='I' deconvolver='clark' weighting='natural' niter=1000 interactive=True savemodel='modelcolumn' |
Amplitude Self-Calibration
Now, we will use our improved model (the image made with the improved phase calibration) to make corrections to the amplitudes and phases.
IMPORTANT! Be very careful when doing amplitude self-calibration! It is possible to "build in" false structures to your data if the model is not a good represenation of the calibrator.
AIPS Task(s) | CASA Task(s) |
---|---|
CALIB inname 'TL016B' inclass 'UVDATA' inseq 1 calsour 'J1154+6022' docal 1 gainuse 0 doband 1 bpver 1 in2name 'J1154+6022' in2class 'icl001' inseq 2 refant 2 solmode 'a&p' solint 0 cmethod 'dft' aparm 4 0 |
tclean vis='tl016b_cal1.ms' field='J1154+6022' caltable='tl016b_cal1.apcal' solint='inf' refant='FD' minblperant=4 gaintype='G' calmode='ap' solnorm=True gaintable=['tl016b_cal1.dcal','tl016b_cal1.pcal'] interp=['linear','linear'] parang=False |
CLCAL inname 'TL016B' inclass 'UVDATA' inseq 1 opcode 'calp' interp '2pt' snver 0 doblank -1 gainver 0 gainuse 0 |
applycal vis='tl016b_cal1.ms' field='J1154+6022' gaintable=['tl016b_cal1.dcal','tl016b_cal1.pcal','tl016b_cal1.apcal'] interp=['linear','linear','linear'] parang=False |
Apply the Self-calibration to the Science Target
In the CASA tutorial, the calibration has only been applied to the phase reference calibrator up to this point. So, before imaging the science target, we need to apply the self-calibration corrections to it.
This step is not necessary for the AIPS calibration because we have been applying the corrections to every source with CLCAL.
AIPS Task(s) | CASA Task(s) |
---|---|
not necessary | applycal vis='tl016b_cal1.ms' field='J1203+6031' gaintable=['tl016b_cal1.dcal','tl016b_cal1.pcal','tl016b_cal1.apcal'] interp=['linear','linear','linear'] applymode='calonly' parang=False |
NOTE: We have set applymode='calonly' in this step to avoid flagging any time when calibration corrections are unavailable. You should carefully inspect the data to make certain you do not need to do any more flagging.
Split Out Science Target
AIPS Task(s) | CASA Task(s) |
---|---|
SPLIT inname 'TL016B' inclass 'UVDATA' inseq 1 sources 'J1203+6031' bchan 8 echan 122 docal 1 gainuse 0 doband 1 bpver 1 outclass 'split2' |
split vis='tl016b_cal1.ms' outputvis='tl016b_cal2.ms' field='J1203+6031' datacolumn='corrected' |
Imaging the Science Target
Just like when we imaged the phase reference calibrator, we will use IMAGR and tclean again to make images of the science target J1203+3061.
NOTE: If you expect to do any self-calibration on the science target in CASA, you should make sure to set savemodel='modelcolumn' in tclean.
AIPS Task(s) | CASA Task(s) |
---|---|
IMAGR inname 'J1203+6031' inclass 'SPLIT2' inseq 1 sources 'J1203+6031' stokes 'i' cellsize 0.0002 imsize 512 robust 5 niter 1000 dotv 1 |
tclean vis='tl016b_cal2.ms' field='J1203+6031' imagename='J1203_im1' imsize=[640], cell=['0.2mas'] stokes='I' deconvolver='clark' weighting='natural' niter=1000 interactive=True savemodel='modelcolumn' |
Additional Tasks
Here are some other AIPS tasks commonly used in VLBI calibration, and their equivalent CASA tasks (when one exists).
AIPS Task | CASA Task |
---|---|
POSSM | plotms |
SNPLT | plotms |
UVPLT | plotms |
FITTP | exportfits or exportuvfits |
IMLOD | importfits |
TVFLG | none |
SPFLG | none |
FTFLG | none |
RFLAG | flagdata mode='rflag' |
SNSMO | smoothcal |
SPLAT | split |
DELZN | none |
ANTAB | none |
LPCAL | none |