PlotBasics: Difference between revisions

From CASA Guides
Jump to navigationJump to search
Jkeohane (talk | contribs)
Akimball (talk | contribs)
→‎Calculating the Vector Potential and Magnetic Field: Edited to improve copy/paste performance
 
(105 intermediate revisions by 3 users not shown)
Line 1: Line 1:
'''Back to the [[PythonOverview]].'''
=== The Three Ways to plot ===
=== The Three Ways to plot ===


Line 9: Line 11:
3.  You can define plot objects, and then use the pyplot methods on those objects.
3.  You can define plot objects, and then use the pyplot methods on those objects.


The last way gives you most control, but the other two are somewhat easier.  The Supernova Cosmology Example below uses the second way.
The last way gives you most control, but the other two are somewhat easier.  The examples below use the second way.


=== Supernova Cosmology Example ===
=== Supernova Cosmology Example ===
[[File:Supernova_Cosmology_Example.py]]


We will import the pyplot and numpy packages
We will import the pyplot and numpy packages


<source lang="Python">
<source lang="Python">
Line 30: Line 33:
they are fun.   
they are fun.   
<source lang="Python">
<source lang="Python">
SN_list = ['']           
SN_list = []           
z_array = np.array([])
z_array = np.array([])
mod_array = np.array([])
mod_array = np.array([])
Line 42: Line 45:
     mod_array = np.append(mod_array,np.float64(mod))
     mod_array = np.append(mod_array,np.float64(mod))
     moderr_array = np.append(moderr_array,np.float64(moderr))   
     moderr_array = np.append(moderr_array,np.float64(moderr))   
f.close()
f.close()
</source>
</source>
Line 51: Line 55:
plt.close()
plt.close()
</source>
</source>
 
[[File:SN_cosmology_example_plot1.png|300px|right|thumb'framelss'|bottom]]
Now let us plot some points:
Now let us plot some points:
<source lang="Python">
<source lang="Python">
Line 58: Line 62:
Notice it is a mess; by default it connects the lines.  
Notice it is a mess; by default it connects the lines.  
We will close it and start over.
We will close it and start over.
<source lang="Python">
<source lang="Python">
plt.close()
plt.close()
</source>
</source>
 
[[File:SN_cosmology_example_plot2.png|300px|right|top]]
We clearly need a title and axes labels
We clearly need a title and axes labels
<source lang="Python">
<source lang="Python">
Line 68: Line 71:
plt.xlabel('z', fontsize=20)
plt.xlabel('z', fontsize=20)
</source>
</source>
But we want a Greek Letter, so we can put some LaTeX syle code with the r command:
But we want a Greek Letter, so we can put some LaTeX syle code with the r command:
<source lang="Python">
<source lang="Python">
plt.ylabel(r'$\mu=m-M$', fontsize=20)
plt.ylabel(r'$\mu$', fontsize=20)
</source>
</source>


Line 78: Line 80:
plt.plot(z_array, mod_array,'ro')
plt.plot(z_array, mod_array,'ro')
</source>
</source>
Now this looks better, we have red circles.  The '''ro''' string, is what told it to give us red circles.  A '''b''' would give us blue dots, or '''ys''' would give yellow squares.


Now this looks better, we have red circles.  The '''ro''' string, is what told it to give us red circles.  A '''b.''' would give us blue dots, or '''ys''' would give yellow squares.
==== Plotting with Error Bars ====


Now we start a new plot:
Now let's plot with the error bars 
[[File:SN_cosmology_example_plot3.png|300px|right|top]]
<source lang="Python">
<source lang="Python">
plt.close()
plt.close()
plt.errorbar(z_array, mod_array, yerr=moderr_array, fmt='.', capsize=0,
    elinewidth=1.0, ecolor=(0.6,0.0,1.0), color='green' )
</source>
</source>


==== Plotting with Error Bars ====
Notice that colors can be specified with a '''fmt''' (same syntax as in the above example) or a '''color''' keyword.
 
With the '''color''' keyword they can be given via an RGB tuple, an RGB hex code, a name, or a single number between '0.0' and '1.0' for gray scale.
Now let's plot with the error bars
<source lang="Python">
plt.errorbar(z_array, mod_array, yerr=moderr_array, fmt='.')
</source>


And putting labels and colors we can do:
And putting labels and colors we can do:
<source lang="Python">
<source lang="Python">
plt.xlabel(r'$z$', fontsize=20)
plt.xlabel(r'$z$', fontsize=20)
plt.ylabel(r'$\mu=m-M$', fontsize=20)
plt.ylabel(r'$\mu$', fontsize=20)
plt.title("Union2 SN Cosmology Data")
plt.title("Union2 SN Cosmology Data")
plt.errorbar(z_array, mod_array, yerr=moderr_array, fmt='.', capsize=0,
    elinewidth=1.0, ecolor=(0.6,0.0,1.0), color='green' )
</source>
Notice that colors can be specified with a '''fmt''' a '''color''' keyword.
They can be given via an RGB tuple, an RGB hex code, a name, or a single number between 0 and 1 for gray scale.
<source lang="Python">
plt.close()
</source>
</source>


==== Plotting Histograms ====
==== Plotting Histograms ====
[[File:SN_cosmology_example_plot4.png|300px|right|top]]


Now there are a lot of points, so let's figure our what our distribution is in z:
Now there are a lot of points, so let's figure our what our distribution is in z:
<source lang="Python">
<source lang="Python">
plt.hist(z_array, 25)
plt.close()
plt.hist(z_array, 25)   # 25 is the number of bins
# And slap a label on it
# And slap a label on it
plt.xlabel(r'$z$', fontsize=20)
plt.xlabel(r'$z$', fontsize=20)
Line 124: Line 119:
==== Plotting With Asymmetrical Error Bars ====
==== Plotting With Asymmetrical Error Bars ====


Now, let's find the real distance from the distance modulus.
Now, let's find the "real" distance from the distance modulus.
To do this we will define a function and a constant.
To do this we will define a function and a constant.


Line 130: Line 125:
def distance_Mpc(m,z):
def distance_Mpc(m,z):
     return 0.00001 * (10**(m/5)) / (1.0 + z)
     return 0.00001 * (10**(m/5)) / (1.0 + z)
c = 299792.458    # km/s
c = 299792.458    # km/s
</source>
</source>
 
So the distance can be found with:
 
<source lang="Python">
<source lang="Python">
d_array = distance_Mpc(mod_array,z_array)
d_array = distance_Mpc(mod_array,z_array)
</source>
</source>
[[File:SN_cosmology_example_plot5.png|300px|right|top]]
Now we will calculate the error bars in the distance, both ways:
Now we will calculate the error bars in the distance, both ways:
<source lang="Python">
<source lang="Python">
Line 143: Line 139:
</source>
</source>


And plot the graph with asymetrical horizontal error bars, and labels
And plot the graph with asymmetrical horizontal error bars, and labels.
Notice the different color formats that can be used.
Notice the different color formats that can be used.


<source lang="Python">
<source lang="Python">
plt.errorbar(d_array, z_array, xerr=(d_error_minus,d_error_plus), fmt='s',
plt.close()
plt.errorbar(z_array, d_array, yerr=(d_error_minus,d_error_plus), fmt='s',
     capsize=5, elinewidth=1.0, color=(0.4,0.0,1.0), ecolor='aqua', barsabove=True)
     capsize=5, elinewidth=1.0, color=(0.4,0.0,1.0), ecolor='aqua', barsabove=True)
plt.ylabel('z', fontsize=15, color='0.0')
plt.xlabel('z', fontsize=15, color='0.0')
plt.xlabel('Distance (Mpc)', fontsize=10, color='g')
plt.ylabel('Distance (Mpc)', fontsize=15, color='g')
plt.title("Union2 SN Cosmology Data", color=(0.4,0.0,1.0))
plt.title("Union2 SN Cosmology Data", color=(0.4,0.0,1.0))
</source>
</source>


==== Plotting With a Second Axis ====
Now we will make a plot with both '''Mpc''' and '''Gly''' on the same plot.
[[File:SN_cosmology_example_plot6.png|300px|right|top]]
First we read the existing plot limits into an array:
<source lang="Python">
<source lang="Python">
plt.close()
axes1_range = np.array( plt.axis() )  
</source>
</source>


==== Plotting With Multiple Axes ====
We want to use the same x-axis so we use the function:
 
Now imagine we want to make a plot for the public, so we need to find the distance in light years.  Also, we want to plot cz.
<source lang="Python">
<source lang="Python">
d_array      = 3.26*d_array      # Convert to Mly
plt.twinx()  # This swaps the Y axis
d_error_minus = 3.26*d_error_minus # Convert to Mly
plt.ylabel('Distance in Billions of Light Years', fontsize=15, color='purple')
d_error_plus  = 3.26*d_error_plus  # Convert to Mly
</source>
</source>


Now we will plot them in Billions of light years.
Now we will make the second axes the right scale:
<source lang="Python">
<source lang="Python">
plt.errorbar(d_array/1000.0, c*z_array, xerr=(d_error_minus/1000.0,d_error_plus/1000.0),
axes2_range = axes1_range.copy()  # Don't forget, we need to make a copy of it.
    fmt='.', capsize=0, elinewidth=1.0, color=(0.4,0.0,1.0), ecolor='aqua', barsabove=False)
axes2_range[2:4] = 3.26*axes1_range[2:4]/1000.0 # set second y-axis to Gly 
plt.axis(axes2_range)
</source>
</source>


Now we make room for each axis
==== Plotting With Multiple Axes and Annotation ====
<source lang="Python">
 
plt.subplots_adjust(right=0.875, top=0.8)
Now imagine we want to make a plot for the public, so we need to find the distance in light years. Also, we want to plot cz.
</source>


And plot the labels.
<source lang="Python">
<source lang="Python">
plt.ylabel('cz (km/s)', fontsize=15, color='aqua')
plt.close()
plt.errorbar(3.26*d_array/1000.0, c*z_array,
    xerr=(3.26*d_error_minus/1000.0, 3.26*d_error_plus/1000.0),
    fmt='.', capsize=0, elinewidth=1.0, color=(0.4,0.0,1.0), ecolor='aqua',
    barsabove=False, zorder=2)
plt.ylabel('cz (km/s)', fontsize=15, color='aqua') # plot the labels
plt.xlabel('Distance (Billions of Light Years)', fontsize=15, color='aqua')
plt.xlabel('Distance (Billions of Light Years)', fontsize=15, color='aqua')
</source>
</source>


Now, you want to make the plot also include z and Mpc, so we need to convert our axes:
Now, you want to make the plot also include z and Mpc, so we need to convert our axes:
<source lang="Python">
<source lang="Python">
axes1_range = np.array( plt.axis() ) # get the existing axes and convert to n array
axes1_range = np.array( plt.axis() ) # get the existing axes and convert to an array
print(axes1_range)
axes2_range = axes1_range.copy() # Don't forget, we need to make a copy of it.
axes2_range = 1.0*axes1_range # Don't forget, we need to make a copy of it.
axes2_range[0:2] = 1000*axes1_range[0:2]/3.26  # set second x-axis to Mpc   
axes2_range[0:2] = 1000*axes1_range[0:2]/3.26  # set second x-axis to Mpc   
axes2_range[2:4] = axes1_range[2:4]/c # set second y-axis to z
axes2_range[2:4] = axes1_range[2:4]/c # set second y-axis to z
print(axes2_range)
</source>
</source>


Now we switch to the second axis
Now we switch to the second axis
<source lang="Python">
<source lang="Python">
plt.subplots_adjust(right=0.875, top=0.8)  # make room for each axis
plt.twinx()  #  This swaps the Y axis
plt.twinx()  #  This swaps the Y axis
plt.ylabel('z', fontsize=15, color='r')  #  I am not sure why this has to be before plt.twiny()
plt.ylabel('z', fontsize=15, color='r')  #  I am not sure why this has to be before plt.twiny()
plt.twiny()  #  This swaps the X axis  
plt.twiny()  #  This swaps the X axis  
plt.xlabel('Distance (Mpc)', fontsize=15, color='purple')
plt.xlabel('Distance (Mpc)', fontsize=15, color='purple')
plt.axis(axes2_range, axisbg='#d0,1f,ff')
plt.title("Union2 SN Cosmology Data", color=(0.4,0.0,1.0), x=0.5, y=1.15)
plt.title("Union2 SN Cosmology Data", color=(0.4,0.0,1.0), x=0.5, y=1.15)
plt.axis(axes2_range)
</source>
And we will put Hubble's law on it just for fun.  Using the '''zorder''' keyword, we can make sure the line is plotted over the points.
[[File:SN_cosmology_example_plot7.png|350px|right|top]]
<source lang="Python">
H = 70.8  # km/s/Mpc
z_limits = np.array([0.0,1.0])  #  Plot is relative to the new axes
d_limits = z_limits*c/H
plt.plot(d_limits,z_limits, 'y-', zorder=4)
</source>
Notice that the second plot rescaled the axes, which is a problem for this plot, because
both x axes and both y axes represent the same physical quantity.  So we reissue the axis
function:
<source lang="Python">
plt.axis(axes2_range)  # this needs to be after the plot command
</source>
Now we will put an arrow on the graph and a label.
<source lang="Python">
plt.annotate("Hubble's law", xy=(d_limits[1],z_limits[1]), color='y', zorder=1,
    xytext=(1.2*d_limits[1],1.2*z_limits[1]), arrowprops=dict(facecolor='y', shrink=0.05))
</source>
</source>


Line 215: Line 239:
It is important to note that some file formats are raster graphics and others are scalable vector graphics.
It is important to note that some file formats are raster graphics and others are scalable vector graphics.


Go back to the [[PythonOverview]] page.
=== Magnetic Needle Example ===
[[File:Magnetic_Needle_Example.py]]
Here we show another plotting example, where we calculate the magnetic field surrounding a thin magnetic needle.
First we import matplolib and numpy:
<source lang="Python">
import numpy as np
import matplotlib.pyplot as plt
</source>
Next we define the grid size, length or needle, and the size of circular masks around the poles.
<source lang="Python">
N = 20      # Size of NxN array.
R = 0.25    # Size of the two circular masks.
l = 1.0    # Length of the rod.
l2 = l/2.0  # Saves on typing l/2.0 all the time.
</source>
Now we will define min and max in the cylindrically radial coordinate (s), and the axial coordinate (z).
<source lang="Python">
# Define s and z
s_delt = 1.0/(N/2)
s_max =  1*(1.0 + 0.5*s_delt)
s_min =  -1*(1.0 - 0.5*s_delt)
# Square Axes
z_delt = 1.0/(N/2)
z_min = -1*(1.0 - 0.5*z_delt)
z_max =  1*(1.0 + 0.5*z_delt)
</source>
Now we will find the 1-D space.  Notice that it would have been slightly easier to use '''linspace''' here instead.
<source lang="Python">
s_space_1D = np.arange(s_min,s_max,s_delt)
z_space_1D = np.arange(z_min,z_max,z_delt)
</source>
Now we define a 2-D grid of s and z values:
<source lang="Python">
s, z = np.meshgrid(s_space_1D,z_space_1D)
</source>
And of course we find the magnetic field:
<source lang="Python">
# Find each term in turn
Bs = 1.0/np.sqrt(s**2 + (z - l2)**2) - 1.0/np.sqrt(s**2 + (z + l2)**2)
Bs = Bs + (z + l2)**2 / (s**2 + (z + l2)**2)**1.5 - (z - l2)**2 / (s**2 + (z - l2)**2)**1.5
Bs = (1.0/(l*s))*Bs
Bz = (z + l2) / (s**2 + (z + l2)**2)**1.5 - (z - l2) / (s**2 + (z - l2)**2)**1.5
Bz = (-1.0/l)*Bz
</source>
[[File:Magnetic_Field_of_Needle.png|300px|right|top]]
Now we make and apply the mask to cover both poles:
<source lang="Python">
mask = np.logical_or(np.sqrt(s**2 + (z-l2)**2) < R,np.sqrt(s**2 + (z+l2)**2) < R)
Bs = np.ma.masked_array(Bs, mask)
Bz = np.ma.masked_array(Bz, mask)
</source>
Now we can make an arrow plot of the magnetic field:
<source lang="Python">
plt.close()
plt.box(on='on')
plt.axis('scaled')
plt.axis((-1.1, 1.1, -1.1, 1.1))
plt.title('Magnetic Field Surrounding a Thin Magnetic Needle')
plt.xlabel(r'$\bf s$', fontsize=20)
plt.ylabel(r'$\bf z$', fontsize=20)
plt.quiver(s,z,Bs,Bz,pivot='middle')
plt.savefig("Magnetic_Field_of_Needle.pdf", format="pdf", transparent=True, bbox_inches='tight')
plt.savefig("Magnetic_Field_of_Needle.png", format="png", transparent=False, bbox_inches='tight')
</source>
Go back to the [[PythonOverview]] page.
=== Square Magnet Example ===
[[File:Square_Magnet_Example.py]]
Here we show another plotting example, where we calculate the vector potential surrounding a square 2D magnet.
We will also find the magnetic field, and plot a contour plot with a vector plot overlaid.
In this example, the vector potential has only a z component, so we will plot it as a filled contour plot, with the location of the magnet and the magnetic field vectors overlaid.
==== Calculating the Vector Potential and Magnetic Field ====
First we need to import the packages:
<source lang="Python">
import numpy as np
import matplotlib.pyplot as plt
</source>
Now, we define the magnet dimensions and sizes of arrays
<source lang="Python">
L = 1.0  # Length of Magnet
W = 1.0  # Width of Magnet
Nplt = 16  # Size of output magnetic field quiver plot
skip = 5  # Plot every skip point in each direction
smooth = 4  #Median of points for finding derivatives for added robustness
N = skip*(Nplt + 2) # Make NxN array for the total calculation
n = 30  # Size of nxn array that bounds the magnet
</source>
Next we will define the X and Y ranges
<source lang="Python">
# Define Maximum and minimum area of the magnet
X_max = W/2.0
X_min = -1*W/2.0
Y_max = L/2.0
Y_min = -1*L/2.0
# Define the X and Y 1 D arrays
X = np.linspace(X_min,X_max,num=n)
Y = np.linspace(Y_min,Y_max,num=n)
# And corresponing 2D arrays
XX, YY = np.meshgrid(X,Y)
# Define Maximum and minimum area of the calculation
scale =( N + 2*smooth )/(N.__float__() - 1.0)
x_max = 1.0*scale
x_min = -1.0*scale
y_max = 1.0*scale
y_min = -1.0*scale
# Define the x and y 2D arrays for whole area
x, y = np.meshgrid(np.linspace(x_min,x_max,num=N),np.linspace(y_min,y_max,num=N))
# Define dx, dy, dX, dY, dR
dx = x[N/2+1,N/2+1] - x[N/2,N/2]
dy = y[N/2+1,N/2+1] - y[N/2,N/2]
dX = X[n/2+1] - X[n/2]
dY = Y[n/2+1] - Y[n/2]
dR = np.sqrt(dX**2 + dY**2)
</source>
Now we define the magnetization array as a constant vector in the y-direction.
<source lang="Python">
My = 1.0 * ( np.logical_and((np.abs(YY) <= L/2.0),(np.abs(XX) <= W/2.0)) )
Mx = 0.0 * My 
M = np.sqrt(Mx**2 + My**2)
</source>
Now, we find the differential vector potential (dAz) as a function of the location of the
magnetic dipole element (X,Y) and the position of interest (x,y).
First we initialize some variables:
<source lang="Python">
dAz = np.zeros((n,n,N,N))  # initialize dA as an n x n x N x N array
rR2  =  np.zeros((N,N))  # initialize N x N matrixe
Az  =  np.zeros((N,N))
pi = 3.14159265359
</source>
We need to make sure that we are ignoring distances smaller than the
gridsize, so we define a minimum distance:
<source lang="Python">
dR2  = dR**2  #  The X Y diagonal gridsize spacing squared
rR2max = (x_max-x_min+X_max-X_min)**2 + (y_max-y_min+Y_max-Y_min)**2
</source>
Now remember a 4-D array is simply a 2D array of 2D arrays, so we iterate over each position on the magnet.
<source lang="Python">
i = 0
while i < n:  # The X Loop
    j = 0
    while j < n:  # The Y Loop
        rR2 = (x-X[i])**2 + (y-Y[j])**2
        rR2 = rR2.clip(2*dR2, 10*rR2max)  #  Clip at two grid spacing, and large distances
        dAz[j,i,:,:] = (0.5/pi) * ( Mx[j,i]*(y-Y[j]) - My[j,i]*(x - X[i]) ) / rR2
        j += 1
    i += 1
# End Looping
</source>
Now we numerically integrate over the magnet, to find the vector potential, using the trapezoid method.
Remember dAz is a 4D array, but Az is a 2D array.
<source lang="Python">
Az = np.trapz(np.trapz(dAz, Y, axis=0), X, axis=0)
</source>
Now that we have the vector potential, we need to take the curl to find the magnetic field.
We will take multiple derivatives, for added robustness.
<source lang="Python">
Bx  =  np.zeros((N,N))  # Initiate Bx and By
By  =  np.zeros((N,N))
Dx  =  np.zeros(smooth-2)  # Initiate the Dx and Dy arrays
Dy  =  np.zeros(smooth-2)
i = smooth
while i < N-smooth:  # The x Loop
    j = smooth
    while j < N-smooth:  # The y Loop
        k = 2
        while k < smooth:  #  This loop is to add robustness by calculating multiple derivatives
            Dx[k-2] =    (Az[j,i+k+1] - Az[j,i-k])/(x[j,i+k+1] - x[j,i-k])
            Dy[k-2] =    (Az[j+k+1,i] - Az[j-k,i])/(y[j+k+1,i] - y[j-k,i])
            k += 1
        Bx[j,i] = np.median(Dy)
        By[j,i] = -1*np.median(Dx)
        j += 1
    i += 1
# End Looping
</source>
Now we will make smaller arrays to plot the magnetic field.
<source lang="Python">
step = skip
start = (N-skip*Nplt)/2 + 2
stop = (N+skip*(Nplt-1))/2 + 1
BpltX  =  Bx[start:stop:step,start:stop:step]
BpltY  =  By[start:stop:step,start:stop:step]
xplt    =  x[start:stop:step,start:stop:step]
yplt    =  y[start:stop:step,start:stop:step]
</source>
==== Plotting ====
First we close and open a plot window, and set the axes and lables.
[[File:A_2D_Square_Magnet_plot_1.png|225px|right|top]]
<source lang="Python">
plt.close()
plt.box(on='on')
plt.axis('scaled')
plt.axis((-1.1, 1.1, -1.1, 1.1))   
plt.xlabel(r'$\bf x$', fontsize=20)
plt.ylabel(r'$\bf y$', fontsize=20)
TITLE ="A 2D Square Magnet"
plt.title(TITLE, weight='bold')
</source>
Now we will make a grayscale plot of the vector potential:
[[File:A_2D_Square_Magnet_plot_2.png|225px|right|top]]
<source lang="Python">
plt.gray()
plt.pcolor(x,y,Az, alpha=1.0, zorder=0)
</source>
Alpha represents the opacity, and zorder represents what layer this represents.
Now we will plot a box to represent the magnet. 
<source lang="Python">
box1x = (-1*L/2.0,L/2.0,L/2.0,-1*L/2.0)
box1y = (-1*W/2.0,-1*W/2.0,W/2.0,W/2.0)
plt.fill(box1x,box1y, facecolor='silver', edgecolor='None', alpha=0.5 , zorder=2)
</source>
[[File:A_2D_Square_Magnet_plot_3.png|300px|right|top]]
Now, we will make a colorful filled contour plot of the vector potential, and plot it underneath the box, but on top of boring gray scale plot we made.  We will also include a colorbar.
<source lang="Python">
plt.spectral()
plt.contourf(x,y,Az,20, alpha=1.0, zorder=1)
plt.colorbar(orientation='vertical')
plt.figtext(0.92, 0.35, 'The Vector Potential', rotation=-90, weight='bold')
</source>
[[File:A_2D_Square_Magnet_plot_4.png|300px|right|top]]
Now, let's plot white magnetic field vectors on top of the vector potential plot.
We will also make sure that the longest arrow length is the grid spacing.
<source lang="Python">
scale = np.max(np.sqrt(BpltX**2 + BpltY**2)) * Nplt  # The bigger the scale, the shorter the arrow
plt.quiver(xplt,yplt,BpltX,BpltY,pivot='middle',units='height', scale=scale,
    zorder=4, color='white')
</source>
And if you want to save this plot, you can do so:
<source lang="Python">
filename = TITLE.replace(' ','_') + "plot_3" + ".pdf"
plt.savefig(filename, format="pdf", transparent=True, \
    bbox_inches='tight')
print("Saved file as: " + filename)
</source>


Go back to the [[PythonOverview]] page.
Go back to the [[PythonOverview]] page.

Latest revision as of 22:54, 17 November 2011

Back to the PythonOverview.

The Three Ways to plot

There are three ways to go about plotting in matplotlib.

1. You can use the pylab environment

2. You can use the matplotlib.pyplot environment, with plotting commands and functions.

3. You can define plot objects, and then use the pyplot methods on those objects.

The last way gives you most control, but the other two are somewhat easier. The examples below use the second way.

Supernova Cosmology Example

File:Supernova Cosmology Example.py

We will import the pyplot and numpy packages

import numpy as np
import matplotlib.pyplot as plt

Reading Data from the Web

We are going to download data from the internet so we will import the urllib package

import urllib

Begin by reading the Union2 SN cosmology data from LBL, because they are fun.

SN_list = []          
z_array = np.array([])
mod_array = np.array([])
moderr_array = np.array([])
f = urllib.urlopen('http://supernova.lbl.gov/Union/figures/SCPUnion2_mu_vs_z.txt')
for line in f:
    if line[0] == '#': continue    # Ignore anything that starts with a #
    SN, z, mod, moderr = line.split()
    SN_list.append(SN)
    z_array = np.append(z_array,np.float64(z))
    mod_array = np.append(mod_array,np.float64(mod))
    moderr_array = np.append(moderr_array,np.float64(moderr))   

f.close()

Simple Plots

Now to the plotting. First we close whatever windows we might have:

plt.close()
thumb'framelss'
thumb'framelss'

Now let us plot some points:

plt.plot(z_array, mod_array)

Notice it is a mess; by default it connects the lines. We will close it and start over.

plt.close()

We clearly need a title and axes labels

plt.title("Union2 SN Cosmology Data")
plt.xlabel('z', fontsize=20)

But we want a Greek Letter, so we can put some LaTeX syle code with the r command:

plt.ylabel(r'$\mu$', fontsize=20)

Now we add a format string to the plot command:

plt.plot(z_array, mod_array,'ro')

Now this looks better, we have red circles. The ro string, is what told it to give us red circles. A b would give us blue dots, or ys would give yellow squares.

Plotting with Error Bars

Now let's plot with the error bars

plt.close() 
plt.errorbar(z_array, mod_array, yerr=moderr_array, fmt='.', capsize=0,
    elinewidth=1.0, ecolor=(0.6,0.0,1.0), color='green' )

Notice that colors can be specified with a fmt (same syntax as in the above example) or a color keyword. With the color keyword they can be given via an RGB tuple, an RGB hex code, a name, or a single number between '0.0' and '1.0' for gray scale.

And putting labels and colors we can do:

plt.xlabel(r'$z$', fontsize=20)
plt.ylabel(r'$\mu$', fontsize=20)
plt.title("Union2 SN Cosmology Data")

Plotting Histograms

Now there are a lot of points, so let's figure our what our distribution is in z:

plt.close()
plt.hist(z_array, 25)   # 25 is the number of bins
# And slap a label on it
plt.xlabel(r'$z$', fontsize=20)
plt.close()

Plotting With Asymmetrical Error Bars

Now, let's find the "real" distance from the distance modulus. To do this we will define a function and a constant.

def distance_Mpc(m,z):
    return 0.00001 * (10**(m/5)) / (1.0 + z)

c = 299792.458    # km/s

So the distance can be found with:

d_array = distance_Mpc(mod_array,z_array)

Now we will calculate the error bars in the distance, both ways:

d_error_plus  = ( distance_Mpc((mod_array+moderr_array),z_array) - d_array )
d_error_minus = ( d_array - distance_Mpc((mod_array-moderr_array),z_array) )

And plot the graph with asymmetrical horizontal error bars, and labels. Notice the different color formats that can be used.

plt.close()
plt.errorbar(z_array, d_array, yerr=(d_error_minus,d_error_plus), fmt='s',
    capsize=5, elinewidth=1.0, color=(0.4,0.0,1.0), ecolor='aqua', barsabove=True)
plt.xlabel('z', fontsize=15, color='0.0')
plt.ylabel('Distance (Mpc)', fontsize=15, color='g')
plt.title("Union2 SN Cosmology Data", color=(0.4,0.0,1.0))

Plotting With a Second Axis

Now we will make a plot with both Mpc and Gly on the same plot.

First we read the existing plot limits into an array:

axes1_range = np.array( plt.axis() )

We want to use the same x-axis so we use the function:

plt.twinx()   #  This swaps the Y axis
plt.ylabel('Distance in Billions of Light Years', fontsize=15, color='purple')

Now we will make the second axes the right scale:

axes2_range = axes1_range.copy()  # Don't forget, we need to make a copy of it.
axes2_range[2:4] = 3.26*axes1_range[2:4]/1000.0  # set second y-axis to Gly  
plt.axis(axes2_range)

Plotting With Multiple Axes and Annotation

Now imagine we want to make a plot for the public, so we need to find the distance in light years. Also, we want to plot cz.

plt.close()
plt.errorbar(3.26*d_array/1000.0, c*z_array,
    xerr=(3.26*d_error_minus/1000.0, 3.26*d_error_plus/1000.0),
    fmt='.', capsize=0, elinewidth=1.0, color=(0.4,0.0,1.0), ecolor='aqua',
    barsabove=False, zorder=2)
plt.ylabel('cz (km/s)', fontsize=15, color='aqua')  # plot the labels
plt.xlabel('Distance (Billions of Light Years)', fontsize=15, color='aqua')

Now, you want to make the plot also include z and Mpc, so we need to convert our axes:

axes1_range = np.array( plt.axis() ) # get the existing axes and convert to an array
axes2_range = axes1_range.copy()  # Don't forget, we need to make a copy of it.
axes2_range[0:2] = 1000*axes1_range[0:2]/3.26  # set second x-axis to Mpc  
axes2_range[2:4] = axes1_range[2:4]/c # set second y-axis to z

Now we switch to the second axis

plt.subplots_adjust(right=0.875, top=0.8)  # make room for each axis
plt.twinx()   #  This swaps the Y axis
plt.ylabel('z', fontsize=15, color='r')  #  I am not sure why this has to be before plt.twiny()
plt.twiny()   #  This swaps the X axis 
plt.xlabel('Distance (Mpc)', fontsize=15, color='purple')
plt.title("Union2 SN Cosmology Data", color=(0.4,0.0,1.0), x=0.5, y=1.15)
plt.axis(axes2_range)

And we will put Hubble's law on it just for fun. Using the zorder keyword, we can make sure the line is plotted over the points.

H = 70.8  # km/s/Mpc
z_limits = np.array([0.0,1.0])  #  Plot is relative to the new axes
d_limits = z_limits*c/H
plt.plot(d_limits,z_limits, 'y-', zorder=4)

Notice that the second plot rescaled the axes, which is a problem for this plot, because both x axes and both y axes represent the same physical quantity. So we reissue the axis function:

plt.axis(axes2_range)  # this needs to be after the plot command

Now we will put an arrow on the graph and a label.

plt.annotate("Hubble's law", xy=(d_limits[1],z_limits[1]), color='y', zorder=1, 
    xytext=(1.2*d_limits[1],1.2*z_limits[1]), arrowprops=dict(facecolor='y', shrink=0.05))

Saving as a PDF

We can save a file as a PDF or most any other common format this way:

plt.savefig('Union2_plot.pdf', format="pdf", transparent=True, bbox_inches='tight')

It is important to note that some file formats are raster graphics and others are scalable vector graphics.

Go back to the PythonOverview page.

Magnetic Needle Example

File:Magnetic Needle Example.py

Here we show another plotting example, where we calculate the magnetic field surrounding a thin magnetic needle.

First we import matplolib and numpy:

import numpy as np
import matplotlib.pyplot as plt

Next we define the grid size, length or needle, and the size of circular masks around the poles.

N = 20      # Size of NxN array.
R = 0.25    # Size of the two circular masks.
l = 1.0     # Length of the rod.
l2 = l/2.0  # Saves on typing l/2.0 all the time.

Now we will define min and max in the cylindrically radial coordinate (s), and the axial coordinate (z).

# Define s and z
s_delt = 1.0/(N/2)
s_max =  1*(1.0 + 0.5*s_delt)
s_min =  -1*(1.0 - 0.5*s_delt)
# Square Axes
z_delt = 1.0/(N/2)
z_min = -1*(1.0 - 0.5*z_delt)
z_max =  1*(1.0 + 0.5*z_delt)

Now we will find the 1-D space. Notice that it would have been slightly easier to use linspace here instead.

s_space_1D = np.arange(s_min,s_max,s_delt)
z_space_1D = np.arange(z_min,z_max,z_delt)

Now we define a 2-D grid of s and z values:

s, z = np.meshgrid(s_space_1D,z_space_1D)

And of course we find the magnetic field:

# Find each term in turn
Bs = 1.0/np.sqrt(s**2 + (z - l2)**2) - 1.0/np.sqrt(s**2 + (z + l2)**2)
Bs = Bs + (z + l2)**2 / (s**2 + (z + l2)**2)**1.5 - (z - l2)**2 / (s**2 + (z - l2)**2)**1.5
Bs = (1.0/(l*s))*Bs
Bz = (z + l2) / (s**2 + (z + l2)**2)**1.5 - (z - l2) / (s**2 + (z - l2)**2)**1.5
Bz = (-1.0/l)*Bz

Now we make and apply the mask to cover both poles:

mask = np.logical_or(np.sqrt(s**2 + (z-l2)**2) < R,np.sqrt(s**2 + (z+l2)**2) < R)
Bs = np.ma.masked_array(Bs, mask)
Bz = np.ma.masked_array(Bz, mask)

Now we can make an arrow plot of the magnetic field:

plt.close()
plt.box(on='on')
plt.axis('scaled')
plt.axis((-1.1, 1.1, -1.1, 1.1))
plt.title('Magnetic Field Surrounding a Thin Magnetic Needle')
plt.xlabel(r'$\bf s$', fontsize=20)
plt.ylabel(r'$\bf z$', fontsize=20)
plt.quiver(s,z,Bs,Bz,pivot='middle')
plt.savefig("Magnetic_Field_of_Needle.pdf", format="pdf", transparent=True, bbox_inches='tight')
plt.savefig("Magnetic_Field_of_Needle.png", format="png", transparent=False, bbox_inches='tight')

Go back to the PythonOverview page.

Square Magnet Example

File:Square Magnet Example.py

Here we show another plotting example, where we calculate the vector potential surrounding a square 2D magnet. We will also find the magnetic field, and plot a contour plot with a vector plot overlaid.

In this example, the vector potential has only a z component, so we will plot it as a filled contour plot, with the location of the magnet and the magnetic field vectors overlaid.

Calculating the Vector Potential and Magnetic Field

First we need to import the packages:

import numpy as np
import matplotlib.pyplot as plt

Now, we define the magnet dimensions and sizes of arrays

L = 1.0  # Length of Magnet
W = 1.0  # Width of Magnet
Nplt = 16   # Size of output magnetic field quiver plot
skip = 5  # Plot every skip point in each direction
smooth = 4   #Median of points for finding derivatives for added robustness
N = skip*(Nplt + 2) # Make NxN array for the total calculation
n = 30  # Size of nxn array that bounds the magnet

Next we will define the X and Y ranges

# Define Maximum and minimum area of the magnet
X_max = W/2.0
X_min = -1*W/2.0
Y_max = L/2.0
Y_min = -1*L/2.0
# Define the X and Y 1 D arrays
X = np.linspace(X_min,X_max,num=n)
Y = np.linspace(Y_min,Y_max,num=n)
# And corresponing 2D arrays
XX, YY = np.meshgrid(X,Y)
# Define Maximum and minimum area of the calculation
scale =( N + 2*smooth )/(N.__float__() - 1.0)
x_max = 1.0*scale
x_min = -1.0*scale
y_max = 1.0*scale
y_min = -1.0*scale
# Define the x and y 2D arrays for whole area
x, y = np.meshgrid(np.linspace(x_min,x_max,num=N),np.linspace(y_min,y_max,num=N))
# Define dx, dy, dX, dY, dR
dx = x[N/2+1,N/2+1] - x[N/2,N/2]
dy = y[N/2+1,N/2+1] - y[N/2,N/2]
dX = X[n/2+1] - X[n/2]
dY = Y[n/2+1] - Y[n/2]
dR = np.sqrt(dX**2 + dY**2)

Now we define the magnetization array as a constant vector in the y-direction.

My = 1.0 * ( np.logical_and((np.abs(YY) <= L/2.0),(np.abs(XX) <= W/2.0)) )
Mx = 0.0 * My  
M = np.sqrt(Mx**2 + My**2)

Now, we find the differential vector potential (dAz) as a function of the location of the magnetic dipole element (X,Y) and the position of interest (x,y).

First we initialize some variables:

dAz = np.zeros((n,n,N,N))   # initialize dA as an n x n x N x N array
rR2  =  np.zeros((N,N))  # initialize N x N matrixe
Az   =  np.zeros((N,N))
pi = 3.14159265359

We need to make sure that we are ignoring distances smaller than the gridsize, so we define a minimum distance:

dR2  = dR**2   #  The X Y diagonal gridsize spacing squared
rR2max = (x_max-x_min+X_max-X_min)**2 + (y_max-y_min+Y_max-Y_min)**2

Now remember a 4-D array is simply a 2D array of 2D arrays, so we iterate over each position on the magnet.

i = 0
while i < n:  # The X Loop
    j = 0
    while j < n:  # The Y Loop
        rR2 = (x-X[i])**2 + (y-Y[j])**2
        rR2 = rR2.clip(2*dR2, 10*rR2max)  #  Clip at two grid spacing, and large distances
        dAz[j,i,:,:] = (0.5/pi) * ( Mx[j,i]*(y-Y[j]) - My[j,i]*(x - X[i]) ) / rR2
        j += 1
    i += 1
# End Looping

Now we numerically integrate over the magnet, to find the vector potential, using the trapezoid method. Remember dAz is a 4D array, but Az is a 2D array.

Az = np.trapz(np.trapz(dAz, Y, axis=0), X, axis=0)

Now that we have the vector potential, we need to take the curl to find the magnetic field. We will take multiple derivatives, for added robustness.

Bx   =  np.zeros((N,N))  # Initiate Bx and By
By   =  np.zeros((N,N))
Dx   =  np.zeros(smooth-2)   # Initiate the Dx and Dy arrays 
Dy   =  np.zeros(smooth-2)
i = smooth
while i < N-smooth:  # The x Loop
    j = smooth
    while j < N-smooth:  # The y Loop
        k = 2
        while k < smooth:   #  This loop is to add robustness by calculating multiple derivatives
            Dx[k-2] =    (Az[j,i+k+1] - Az[j,i-k])/(x[j,i+k+1] - x[j,i-k])
            Dy[k-2] =    (Az[j+k+1,i] - Az[j-k,i])/(y[j+k+1,i] - y[j-k,i])
            k += 1
        Bx[j,i] = np.median(Dy)
        By[j,i] = -1*np.median(Dx)
        j += 1
    i += 1
# End Looping

Now we will make smaller arrays to plot the magnetic field.

step = skip
start = (N-skip*Nplt)/2 + 2
stop = (N+skip*(Nplt-1))/2 + 1
BpltX   =  Bx[start:stop:step,start:stop:step]
BpltY   =  By[start:stop:step,start:stop:step]
xplt    =  x[start:stop:step,start:stop:step]
yplt    =  y[start:stop:step,start:stop:step]

Plotting

First we close and open a plot window, and set the axes and lables.

plt.close()
plt.box(on='on')
plt.axis('scaled')
plt.axis((-1.1, 1.1, -1.1, 1.1))    
plt.xlabel(r'$\bf x$', fontsize=20)
plt.ylabel(r'$\bf y$', fontsize=20)
TITLE ="A 2D Square Magnet"
plt.title(TITLE, weight='bold')

Now we will make a grayscale plot of the vector potential:

plt.gray()
plt.pcolor(x,y,Az, alpha=1.0, zorder=0)

Alpha represents the opacity, and zorder represents what layer this represents.

Now we will plot a box to represent the magnet.

box1x = (-1*L/2.0,L/2.0,L/2.0,-1*L/2.0)
box1y = (-1*W/2.0,-1*W/2.0,W/2.0,W/2.0)
plt.fill(box1x,box1y, facecolor='silver', edgecolor='None', alpha=0.5 , zorder=2)

Now, we will make a colorful filled contour plot of the vector potential, and plot it underneath the box, but on top of boring gray scale plot we made. We will also include a colorbar.

plt.spectral()
plt.contourf(x,y,Az,20, alpha=1.0, zorder=1)
plt.colorbar(orientation='vertical')
plt.figtext(0.92, 0.35, 'The Vector Potential', rotation=-90, weight='bold')

Now, let's plot white magnetic field vectors on top of the vector potential plot. We will also make sure that the longest arrow length is the grid spacing.

scale = np.max(np.sqrt(BpltX**2 + BpltY**2)) * Nplt  # The bigger the scale, the shorter the arrow
plt.quiver(xplt,yplt,BpltX,BpltY,pivot='middle',units='height', scale=scale, 
    zorder=4, color='white')

And if you want to save this plot, you can do so:

filename = TITLE.replace(' ','_') + "plot_3" + ".pdf"
plt.savefig(filename, format="pdf", transparent=True, \
    bbox_inches='tight')
print("Saved file as: " + filename)

Go back to the PythonOverview page.