VLA CASA Bandpass Slope-CASA4.5.2: Difference between revisions

From CASA Guides
Jump to navigationJump to search
Jott (talk | contribs)
Tperreau (talk | contribs)
No edit summary
 
(38 intermediate revisions by 3 users not shown)
Line 5: Line 5:
== Overview ==
== Overview ==


For the standard VLA flux density calibrators 3C138, 3C147, 3C286, and 3C48, CASA includes a spatial and spectral model that is being applied for the bandpass calibration. This model takes out the source characteristics and the calibration solution is then a representation of the instrumental and atmospheric corrections. These VLA standard calibrators, however, exhibit a negative spectral index and are relatively weak at high frequencies.
For the standard VLA flux density calibrators 3C138, 3C147, 3C286 and 3C48, CASA includes spatial and spectral models that are applied during calibration. The models account for the source characteristics, resulting in calibration solutions that represent the instrumental and atmospheric corrections. These VLA standard calibrators, however, exhibit a negative spectral index and are relatively weak at high frequencies.


Although they are usually still bright enough for the absolute flux density calibration of the VLA, a good bandpass determination, which is very important for spectral line observations, requires large signal-to-noise ratios and therefore either a long integration time or a very strong source (see the [https://science.nrao.edu/facilities/vla/docs/manuals/obsguide/modes/line#section-8 Spectral Line Guide for Observing]). Observations of non-standard, but strong, bandpass calibrators are therefore common at high frequencies. Unfortunately, such sources are likely variable and no ''a priori'' flux density model is available. In particular, these sources exhibit an unknown and maybe variable spectral slope, which, if not accounted for, will create an error in the bandpass calibration. This tutorial describes how to model a spectral slope and how to correct the bandpass solution for this effect.  
Although the standard VLA flux density calibrators are usually still bright enough for absolute flux density calibration, a good bandpass determination—which is very important for spectral line observations—requires large signal-to-noise ratios derived from either a long integration time or a very strong source (see the [https://science.nrao.edu/facilities/vla/docs/manuals/obsguide/modes/line#section-8 Spectral Line Guide for Observing]). Observations of non-standard, but strong, bandpass calibrators are therefore common at high frequencies. Unfortunately, such sources are likely variable and no ''a priori'' flux density model is available. In particular, these sources exhibit an unknown and maybe variable spectral slope, which, if not accounted for, will create an error in the bandpass calibration. This tutorial describes how to model a spectral slope and how to correct the bandpass solution for this effect.  


Data used in this guide are taken in wide, 3-bit mode for the protostar G192.16-3.84 in Ka-band with basebands centered at 29 and 36.5 GHz. Each baseband has over 4 GHz of bandwidth comprising thirty-two 128-MHz spectral windows.
Data used in this guide are taken in wide 3-bit mode for the protostar G192.16-3.84 in Ka-band with basebands centered at 29 and 36.5 GHz. Each baseband has over 4 GHz of bandwidth comprising thirty-two 128-MHz spectral windows.


If you are new to CASA, or with VLA data reduction in CASA, it is '''strongly''' recommended that you start with either the [[EVLA Continuum Tutorial 3C391]] or [[Getting Started in CASA]] before proceeding with this tutorial.
If you are new to CASA, or with VLA data reduction in CASA, it is '''strongly''' recommended that you start with the [[Getting Started in CASA]] guide, the [https://casaguides.nrao.edu/index.php?title=VLA_high_frequency_Spectral_Line_tutorial_-_IRC%2B10216 IRC+10216 spectral line tutorial], or the [[VLA Continuum Tutorial 3C391]] before proceeding with this tutorial.


== Obtaining the Data ==
== Obtaining the Data ==


As this tutorial concerns bandpass calibration, all sources other than the flux density and bandpass calibrator scans were removed from the MS. All pre-calibration steps including flagging, antenna position offsets, requantizer gains, opacity corrections, and gain-elevation curves were applied. The original data (<tt>TVER0004.sb14459364.eb14492359.56295.26287841435</tt>) can be obtained through the [https://archive.nrao.edu NRAO archive] and has a raw size of 57.04 GB.
As this tutorial concerns bandpass calibration, all sources other than the flux density and bandpass calibrator scans were removed from the measurement set (MS). All pre-calibration steps including flagging, antenna position offsets, requantizer gains, opacity corrections, and gain-elevation curves were applied. The original data (<tt>TVER0004.sb14459364.eb14492359.56295.26287841435</tt>) can be obtained through the [https://archive.nrao.edu NRAO archive] and has a raw size of 57.04 GB.


  The trimmed measurement set can be downloaded directly from [http://casa.nrao.edu/Data/EVLA/G192/G192-BP.ms.tar.gz http://casa.nrao.edu/Data/EVLA/G192/G192-BP.ms.tar.gz] (dataset size: 3.4 GB)
  The trimmed measurement set can be downloaded directly from [http://casa.nrao.edu/Data/EVLA/G192/G192-BP.ms.tar.gz http://casa.nrao.edu/Data/EVLA/G192/G192-BP.ms.tar.gz] (dataset size: 3.4 GB)
Line 33: Line 33:
</source>
</source>


This will run a script to initialize CASA, setting paths appropriately. The script will also create a file called ipython-<unique-stamp>.log, which will contain a record of all the text you enter at the CASA prompt, as well as casapy-<unique-stamp>.log, which will contain all the messages that are printed to the CASA logger window. It is recommended that you keep your log files intact&#151;you may need them to remind you of the last step you completed in your data reduction. (It is also a good idea to include your log files when submitting a help desk ticket).
This will run a script initializing CASA and setting paths appropriately. The script will also create two files called ''ipython-<unique-stamp>.log'' (which contains a record of all the text you enter at the CASA prompt) as well as ''casapy-<unique-stamp>.log'' (which will contain all the messages that are printed to the CASA logger window). It is recommended that you keep your log files intact&#151;you may need them to remind you of the last step you completed in your data reduction. (It is also a good idea to include your log files when submitting a help desk ticket).


Once CASA has started, a logger window will appear. Note that you can rescale this window or change the font size (under the "View" menu option) as desired.
Once CASA has started, a logger window will appear. Note that you can rescale this window or change the font size (under the '''View''' menu option) as desired.


== Examining the Measurement Set (MS) ==
== Examining the Measurement Set (MS) ==
Line 76: Line 76:
   2      EVLA_KA#A1C1#4    128  TOPO  34732.000      1000.000    128000.0  34795.5000      10  RR  LL
   2      EVLA_KA#A1C1#4    128  TOPO  34732.000      1000.000    128000.0  34795.5000      10  RR  LL
   3      EVLA_KA#A1C1#5    128  TOPO  34860.000      1000.000    128000.0  34923.5000      10  RR  LL
   3      EVLA_KA#A1C1#5    128  TOPO  34860.000      1000.000    128000.0  34923.5000      10  RR  LL
  4      EVLA_KA#A1C1#6    128  TOPO  34988.000      1000.000    128000.0  35051.5000      10  RR  LL
 
  5      EVLA_KA#A1C1#7    128  TOPO  35116.000      1000.000    128000.0  35179.5000      10  RR  LL
<snip>
  6      EVLA_KA#A1C1#8    128  TOPO  35244.000      1000.000    128000.0  35307.5000      10  RR  LL
 
  7      EVLA_KA#A1C1#9    128  TOPO  35372.000      1000.000    128000.0  35435.5000      10  RR  LL
  8      EVLA_KA#A1C1#10    128  TOPO  35500.000      1000.000    128000.0  35563.5000      10  RR  LL
  9      EVLA_KA#A1C1#11    128  TOPO  35628.000      1000.000    128000.0  35691.5000      10  RR  LL
  10    EVLA_KA#A1C1#12    128  TOPO  35756.000      1000.000    128000.0  35819.5000      10  RR  LL
  11    EVLA_KA#A1C1#13    128  TOPO  35884.000      1000.000    128000.0  35947.5000      10  RR  LL
  12    EVLA_KA#A1C1#14    128  TOPO  36012.000      1000.000    128000.0  36075.5000      10  RR  LL
   13    EVLA_KA#A1C1#15    128  TOPO  36140.000      1000.000    128000.0  36203.5000      10  RR  LL
   13    EVLA_KA#A1C1#15    128  TOPO  36140.000      1000.000    128000.0  36203.5000      10  RR  LL
   14    EVLA_KA#A1C1#16    128  TOPO  36268.000      1000.000    128000.0  36331.5000      10  RR  LL
   14    EVLA_KA#A1C1#16    128  TOPO  36268.000      1000.000    128000.0  36331.5000      10  RR  LL
Line 91: Line 85:
   17    EVLA_KA#A2C2#19    128  TOPO  36604.000      1000.000    128000.0  36667.5000      11  RR  LL
   17    EVLA_KA#A2C2#19    128  TOPO  36604.000      1000.000    128000.0  36667.5000      11  RR  LL
   18    EVLA_KA#A2C2#20    128  TOPO  36732.000      1000.000    128000.0  36795.5000      11  RR  LL
   18    EVLA_KA#A2C2#20    128  TOPO  36732.000      1000.000    128000.0  36795.5000      11  RR  LL
  19    EVLA_KA#A2C2#21    128  TOPO  36860.000      1000.000    128000.0 36923.5000      11  RR  LL
   
  20    EVLA_KA#A2C2#22    128  TOPO  36988.000      1000.000    128000.0  37051.5000      11  RR  LL
<snip>
  21    EVLA_KA#A2C2#23    128  TOPO  37116.000      1000.000    128000.0  37179.5000      11  RR  LL
 
  22    EVLA_KA#A2C2#24    128  TOPO  37244.000      1000.000    128000.0  37307.5000      11  RR  LL
  23    EVLA_KA#A2C2#25    128  TOPO  37372.000      1000.000    128000.0  37435.5000      11  RR  LL
  24    EVLA_KA#A2C2#26    128  TOPO  37500.000      1000.000    128000.0  37563.5000      11  RR  LL
  25    EVLA_KA#A2C2#27    128  TOPO  37628.000      1000.000    128000.0  37691.5000      11  RR  LL
  26    EVLA_KA#A2C2#28    128  TOPO  37756.000      1000.000    128000.0  37819.5000      11  RR  LL
  27    EVLA_KA#A2C2#29    128  TOPO  37884.000      1000.000    128000.0  37947.5000      11  RR  LL
  28    EVLA_KA#A2C2#30    128  TOPO  38012.000      1000.000    128000.0  38075.5000      11  RR  LL
   29    EVLA_KA#A2C2#31    128  TOPO  38140.000      1000.000    128000.0  38203.5000      11  RR  LL
   29    EVLA_KA#A2C2#31    128  TOPO  38140.000      1000.000    128000.0  38203.5000      11  RR  LL
   30    EVLA_KA#A2C2#32    128  TOPO  38268.000      1000.000    128000.0  38331.5000      11  RR  LL
   30    EVLA_KA#A2C2#32    128  TOPO  38268.000      1000.000    128000.0  38331.5000      11  RR  LL
Line 107: Line 94:
   33    EVLA_KA#B1D1#35    128  TOPO  27104.000      1000.000    128000.0  27167.5000      13  RR  LL
   33    EVLA_KA#B1D1#35    128  TOPO  27104.000      1000.000    128000.0  27167.5000      13  RR  LL
   34    EVLA_KA#B1D1#36    128  TOPO  27232.000      1000.000    128000.0  27295.5000      13  RR  LL
   34    EVLA_KA#B1D1#36    128  TOPO  27232.000      1000.000    128000.0  27295.5000      13  RR  LL
  35    EVLA_KA#B1D1#37    128  TOPO  27360.000      1000.000    128000.0  27423.5000      13  RR  LL
 
  36    EVLA_KA#B1D1#38    128  TOPO  27488.000      1000.000    128000.0  27551.5000      13  RR  LL
<snip>
  37    EVLA_KA#B1D1#39    128  TOPO  27616.000      1000.000    128000.0  27679.5000      13  RR  LL
 
  38    EVLA_KA#B1D1#40    128  TOPO  27744.000      1000.000    128000.0  27807.5000      13  RR  LL
  39    EVLA_KA#B1D1#41    128  TOPO  27872.000      1000.000    128000.0  27935.5000      13  RR  LL
  40    EVLA_KA#B1D1#42    128  TOPO  28000.000      1000.000    128000.0  28063.5000      13  RR  LL
  41    EVLA_KA#B1D1#43    128  TOPO  28128.000      1000.000    128000.0  28191.5000      13  RR  LL
  42    EVLA_KA#B1D1#44    128  TOPO  28256.000      1000.000    128000.0  28319.5000      13  RR  LL
  43    EVLA_KA#B1D1#45    128  TOPO  28384.000      1000.000    128000.0  28447.5000      13  RR  LL
  44    EVLA_KA#B1D1#46    128  TOPO  28512.000      1000.000    128000.0  28575.5000      13  RR  LL
   45    EVLA_KA#B1D1#47    128  TOPO  28640.000      1000.000    128000.0  28703.5000      13  RR  LL
   45    EVLA_KA#B1D1#47    128  TOPO  28640.000      1000.000    128000.0  28703.5000      13  RR  LL
   46    EVLA_KA#B1D1#48    128  TOPO  28768.000      1000.000    128000.0  28831.5000      13  RR  LL
   46    EVLA_KA#B1D1#48    128  TOPO  28768.000      1000.000    128000.0  28831.5000      13  RR  LL
Line 123: Line 103:
   49    EVLA_KA#B2D2#51    128  TOPO  29104.000      1000.000    128000.0  29167.5000      14  RR  LL
   49    EVLA_KA#B2D2#51    128  TOPO  29104.000      1000.000    128000.0  29167.5000      14  RR  LL
   50    EVLA_KA#B2D2#52    128  TOPO  29232.000      1000.000    128000.0  29295.5000      14  RR  LL
   50    EVLA_KA#B2D2#52    128  TOPO  29232.000      1000.000    128000.0  29295.5000      14  RR  LL
  51    EVLA_KA#B2D2#53    128  TOPO  29360.000      1000.000    128000.0  29423.5000      14  RR  LL
 
  52    EVLA_KA#B2D2#54    128  TOPO  29488.000      1000.000    128000.0  29551.5000      14  RR  LL
<snip>
  53    EVLA_KA#B2D2#55    128  TOPO  29616.000      1000.000    128000.0  29679.5000      14  RR  LL
 
  54    EVLA_KA#B2D2#56    128  TOPO  29744.000      1000.000    128000.0  29807.5000      14  RR  LL
  55    EVLA_KA#B2D2#57    128  TOPO  29872.000      1000.000    128000.0  29935.5000      14  RR  LL
  56    EVLA_KA#B2D2#58    128  TOPO  30000.000      1000.000    128000.0  30063.5000      14  RR  LL
  57    EVLA_KA#B2D2#59    128  TOPO  30128.000      1000.000    128000.0  30191.5000      14  RR  LL
  58    EVLA_KA#B2D2#60    128  TOPO  30256.000      1000.000    128000.0  30319.5000      14  RR  LL
  59    EVLA_KA#B2D2#61    128  TOPO  30384.000      1000.000    128000.0  30447.5000      14  RR  LL
  60    EVLA_KA#B2D2#62    128  TOPO  30512.000      1000.000    128000.0  30575.5000      14  RR  LL
   61    EVLA_KA#B2D2#63    128  TOPO  30640.000      1000.000    128000.0  30703.5000      14  RR  LL
   61    EVLA_KA#B2D2#63    128  TOPO  30640.000      1000.000    128000.0  30703.5000      14  RR  LL
   62    EVLA_KA#B2D2#64    128  TOPO  30768.000      1000.000    128000.0  30831.5000      14  RR  LL
   62    EVLA_KA#B2D2#64    128  TOPO  30768.000      1000.000    128000.0  30831.5000      14  RR  LL
Line 141: Line 114:
   0    3C147              1    -              -             
   0    3C147              1    -              -             
   0    3C147              2    -              -             
   0    3C147              2    -              -             
  0    3C147              3    -              -           
 
  0    3C147              4    -              -           
<snip>
  0    3C147              5    -              -           
 
  0    3C147              6    -              -           
  0    3C147              7    -              -           
  0    3C147              8    -              -           
  0    3C147              9    -              -           
  0    3C147              10    -              -           
  0    3C147              11    -              -           
  0    3C147              12    -              -           
  0    3C147              13    -              -           
  0    3C147              14    -              -           
  0    3C147              15    -              -           
  0    3C147              16    -              -           
  0    3C147              17    -              -           
  0    3C147              18    -              -           
  0    3C147              19    -              -           
  0    3C147              20    -              -           
  0    3C147              21    -              -           
  0    3C147              22    -              -           
  0    3C147              23    -              -           
  0    3C147              24    -              -           
  0    3C147              25    -              -           
  0    3C147              26    -              -           
  0    3C147              27    -              -           
  0    3C147              28    -              -           
  0    3C147              29    -              -           
  0    3C147              30    -              -           
  0    3C147              31    -              -           
  0    3C147              32    -              -           
  0    3C147              33    -              -           
  0    3C147              34    -              -           
  0    3C147              35    -              -           
  0    3C147              36    -              -           
  0    3C147              37    -              -           
  0    3C147              38    -              -           
  0    3C147              39    -              -           
  0    3C147              40    -              -           
  0    3C147              41    -              -           
  0    3C147              42    -              -           
  0    3C147              43    -              -           
  0    3C147              44    -              -           
  0    3C147              45    -              -           
  0    3C147              46    -              -           
  0    3C147              47    -              -           
  0    3C147              48    -              -           
  0    3C147              49    -              -           
  0    3C147              50    -              -           
  0    3C147              51    -              -           
  0    3C147              52    -              -           
  0    3C147              53    -              -           
  0    3C147              54    -              -           
  0    3C147              55    -              -           
  0    3C147              56    -              -           
  0    3C147              57    -              -           
  0    3C147              58    -              -           
  0    3C147              59    -              -           
  0    3C147              60    -              -           
   0    3C147              61    -              -             
   0    3C147              61    -              -             
   0    3C147              62    -              -             
   0    3C147              62    -              -             
Line 205: Line 123:
   1    3c84-J0319+413      1    -              -             
   1    3c84-J0319+413      1    -              -             
   1    3c84-J0319+413      2    -              -             
   1    3c84-J0319+413      2    -              -             
  1    3c84-J0319+413      3    -              -           
 
  1    3c84-J0319+413      4    -              -           
<snip>
  1    3c84-J0319+413      5    -              -           
 
  1    3c84-J0319+413      6    -              -           
  1    3c84-J0319+413      7    -              -           
  1    3c84-J0319+413      8    -              -           
  1    3c84-J0319+413      9    -              -           
  1    3c84-J0319+413      10    -              -           
  1    3c84-J0319+413      11    -              -           
  1    3c84-J0319+413      12    -              -           
  1    3c84-J0319+413      13    -              -           
  1    3c84-J0319+413      14    -              -           
  1    3c84-J0319+413      15    -              -           
  1    3c84-J0319+413      16    -              -           
  1    3c84-J0319+413      17    -              -           
  1    3c84-J0319+413      18    -              -           
  1    3c84-J0319+413      19    -              -           
  1    3c84-J0319+413      20    -              -           
  1    3c84-J0319+413      21    -              -           
  1    3c84-J0319+413      22    -              -           
  1    3c84-J0319+413      23    -              -           
  1    3c84-J0319+413      24    -              -           
  1    3c84-J0319+413      25    -              -           
  1    3c84-J0319+413      26    -              -           
  1    3c84-J0319+413      27    -              -           
  1    3c84-J0319+413      28    -              -           
  1    3c84-J0319+413      29    -              -           
  1    3c84-J0319+413      30    -              -           
  1    3c84-J0319+413      31    -              -           
  1    3c84-J0319+413      32    -              -           
  1    3c84-J0319+413      33    -              -           
  1    3c84-J0319+413      34    -              -           
  1    3c84-J0319+413      35    -              -           
  1    3c84-J0319+413      36    -              -           
  1    3c84-J0319+413      37    -              -           
  1    3c84-J0319+413      38    -              -           
  1    3c84-J0319+413      39    -              -           
  1    3c84-J0319+413      40    -              -           
  1    3c84-J0319+413      41    -              -           
  1    3c84-J0319+413      42    -              -           
  1    3c84-J0319+413      43    -              -           
  1    3c84-J0319+413      44    -              -           
  1    3c84-J0319+413      45    -              -           
  1    3c84-J0319+413      46    -              -           
  1    3c84-J0319+413      47    -              -           
  1    3c84-J0319+413      48    -              -           
  1    3c84-J0319+413      49    -              -           
  1    3c84-J0319+413      50    -              -           
  1    3c84-J0319+413      51    -              -           
  1    3c84-J0319+413      52    -              -           
  1    3c84-J0319+413      53    -              -           
  1    3c84-J0319+413      54    -              -           
  1    3c84-J0319+413      55    -              -           
  1    3c84-J0319+413      56    -              -           
  1    3c84-J0319+413      57    -              -           
  1    3c84-J0319+413      58    -              -           
  1    3c84-J0319+413      59    -              -           
  1    3c84-J0319+413      60    -              -           
   1    3c84-J0319+413      61    -              -             
   1    3c84-J0319+413      61    -              -             
   1    3c84-J0319+413      62    -              -             
   1    3c84-J0319+413      62    -              -             
   1    3c84-J0319+413      63    -              -             
   1    3c84-J0319+413      63    -              -             
Antennas: 22:
 
  ID  Name  Station  Diam.    Long.        Lat.                Offset from array center (m)                ITRF Geocentric coordinates (m)       
<snip>
                                                                    East        North    Elevation              x              y              z
  1    ea02  N56      25.0 m  -107.37.47.9  +34.00.38.4      -1105.2071    12254.3069      -34.2426 -1600128.383400 -5035104.146500  3565024.672100
  2    ea03  N16      25.0 m  -107.37.10.9  +33.54.48.0      -155.8511    1426.6436      -9.3827 -1601061.956000 -5041175.880700  3556058.037600
  3    ea05  W08      25.0 m  -107.37.21.6  +33.53.53.0      -432.1184    -272.1472      -1.5070 -1601614.092200 -5042001.650900  3554652.508900
  4    ea06  N32      25.0 m  -107.37.22.0  +33.56.33.6      -441.7237    4689.9748      -16.9332 -1600781.042100 -5039347.435200  3558761.533000
  5    ea07  E40      25.0 m  -107.32.35.4  +33.52.16.9      6908.8279    -3240.7316      39.0057 -1595124.924100 -5045829.461500  3552210.685200
  6    ea09  E24      25.0 m  -107.35.13.4  +33.53.18.1      2858.1754    -1349.1257      13.7290 -1598663.097500 -5043581.389700  3553767.027800
  8    ea11  W56      25.0 m  -107.44.26.7  +33.49.54.6    -11333.2153    -7637.6824      15.3542 -1613255.404300 -5042613.085000  3548545.901400
  9    ea12  E08      25.0 m  -107.36.48.9  +33.53.55.1        407.8285    -206.0065      -3.2272 -1600801.926000 -5042219.366500  3554706.448200
  11  ea14  W16      25.0 m  -107.37.57.4  +33.53.33.0      -1348.7083    -890.6269        1.3068 -1602592.853600 -5042055.005300  3554140.703900
  12  ea15  W72      25.0 m  -107.48.24.0  +33.47.41.2    -17419.4730  -11760.2869      14.9578 -1619757.314900 -5042937.673700  3545120.385300
  13  ea16  N08      25.0 m  -107.37.07.5  +33.54.15.8        -68.9252      433.1901      -5.0683 -1601147.956700 -5041733.824100  3555235.952500
  14  ea17  E48      25.0 m  -107.30.56.1  +33.51.38.4      9456.5938    -4431.6366      37.9317 -1592894.088800 -5047229.121000  3551221.221100
  15  ea18  E72      25.0 m  -107.24.42.3  +33.49.18.0      19041.8754    -8769.2059        4.7234 -1584460.867200 -5052385.599300  3547599.997600
  17  ea20  N72      25.0 m  -107.38.10.5  +34.04.12.2      -1685.6775    18861.8403      -43.4734 -1599557.932000 -5031396.371000  3570494.760600
  18  ea21  E64      25.0 m  -107.27.00.1  +33.50.06.7      15507.6045    -7263.7280      67.1961 -1587600.190400 -5050575.873800  3548885.396600
  19  ea22  N24      25.0 m  -107.37.16.1  +33.55.37.7      -290.3745    2961.8582      -12.2374 -1600930.087700 -5040316.398500  3557330.387000
  20  ea23  N64      25.0 m  -107.37.58.7  +34.02.20.5      -1382.3750    15410.1463      -40.6373 -1599855.675100 -5033332.371000  3567636.622500
  21  ea24  W40      25.0 m  -107.41.13.5  +33.51.43.1      -6377.9740    -4286.7919        8.2191 -1607962.456900 -5042338.214500  3551324.943600
  22  ea25  W48      25.0 m  -107.42.44.3  +33.50.52.1      -8707.9407    -5861.7854      15.5265 -1610451.925400 -5042471.123100  3550021.056800
  23  ea26  W32      25.0 m  -107.39.54.8  +33.52.27.2      -4359.4561    -2923.1223      11.7579 -1605808.647100 -5042230.071500  3552459.203400
  24  ea27  E16      25.0 m  -107.36.09.8  +33.53.40.0      1410.0316    -673.4696      -0.7909 -1599926.110000 -5042772.967300  3554319.791200
  25  ea28  N40      25.0 m  -107.37.29.5  +33.57.44.4      -633.6167    6878.5984      -20.7748 -1600592.764000 -5038121.352000  3560574.847300
</pre>
</pre>
 
This small MS contains only scans on the flux density calibrator 3C147 (field 0) and the bandpass calibrator 3C84 (field 1). Both fields have 64 spectral windows (spws); each spw is comprised of 128 channels, each channel being 1 MHz wide, for a total bandwidth of 128 MHz / spw.
We have trimmed the MS to contain only scans on the flux calibrator 3C147 (field 0) and the bandpass calibrator 3C84 (field 1); but retained all 64 spectral windows, each 128 MHz wide and containing one hundred twenty-eight 1 MHz channels.


== Setting the Model of the Flux Density Calibrator ==
== Setting the Model of the Flux Density Calibrator ==
Line 309: Line 148:
* <tt>scalebychan=True</tt>: If ''scalebychan=False'' {{setjy}} would use a single value per spectral window.
* <tt>scalebychan=True</tt>: If ''scalebychan=False'' {{setjy}} would use a single value per spectral window.


Inspecting the logger report shows that 3C147 has a flux density ranging from ~1.0-1.47 Jy across all spws.  
Inspecting the logger report shows that 3C147 has amplitudes ranging from ~1.0-1.47 Jy across all spws.  


We can plot the model data using {{plotms}} (Figure 1):
We can plot the model data using {{plotms}} (Figure 1):
<source lang="python">
<source lang="python">
# In CASA
# In CASA
plotms(vis='G192-BP.ms', field='0', antenna='ea02&ea05', \
plotms(vis='G192-BP.ms', field='0', antenna='ea03', \
       xaxis='freq', yaxis='amp', ydatacolumn='model')
       xaxis='freq', yaxis='amp', ydatacolumn='model',coloraxis='ant2')
</source>
</source>
This plot shows baselines to antenna ea03. Since we provided both a spectral and a spatial model for this well resolved calibrator, each baseline has a somewhat different behavior.


== Calibrating delays and initial bandpass solutions ==
== Calibrating delays and initial bandpass solutions ==


As a first step, we need to specify a reference antenna for all phase calibrations. It is desirable to use an antenna that is near the center of the array and that has a minimum of flags. The array can be mapped with {{plotants}}:
As a first step, we need to specify a reference antenna for all phase calibrations. It is desirable to use an antenna that is near the center of the array and has the least amount of calibrator data flagged. The array can be mapped with {{plotants}}:


<source lang="python">
<source lang="python">
Line 326: Line 167:
plotants(vis='G192-BP.ms')
plotants(vis='G192-BP.ms')
</source>
</source>
Although the plot is a bit crowded (Figure 2), a zoom in shows that ea05 sits close to the center and appears to be a good choice.  
Although the plot is a bit crowded (Figure 2), a zooming in (with the magnifying glass icon) shows that ea05 is located close to the center. It also has a comparably small number of flags and we will use this antenna as our reference.
[[Image:plotG192_plotants.png|200px|thumb|right|Figure 2: plotants plotter]]
[[Image:plotG192_plotants.png|200px|thumb|right|Figure 2: plotants plotter]]


[[Image:plotG192_plotcal_G0p1_4.0.png|200px|thumb|right|Figure 3a: plotcal G0 phase ant 0~15]]
We start with a phase-only, time-dependent calibration solution for the bandpass calibrator. Solutions for each integration will remove most of the decorrelation of the signal. For best results, we will derive the phase variations from a narrow range of channels (60~68) near the centers of each spws:
[[Image:plotG192_plotcal_G0p2_4.0.png|200px|thumb|right|Figure 3b: plotcal G0 phase ant 16~26]]
 
[[Image:plotG192_plotcal_delays.png|200px|thumb|right|Figure 4: plotcal K0 delay vs. antenna]]
 
 
We start with a phase-only calibration solution on a narrow range of channels near the center of each spectral window on the bandpass calibrator 3C84 to flatten them with respect to time before solving for the bandpass. This will remove most of the decorrelation of the signal. The range 60~68 should work, and we derive a solution for each individual integration:


<source lang="python">
<source lang="python">
Line 350: Line 186:
* <tt>gaintable</tt> is not set here as we have already applied pre-calibrations.
* <tt>gaintable</tt> is not set here as we have already applied pre-calibrations.


Plot the phase solutions (using full phase range, -180 to 180, instead of autorange):
Plot the phase solutions (using full phase range -180 to 180 instead of autorange):


<source lang="python">
<source lang="python">
Line 358: Line 194:
</source>
</source>


Plot the phase solutions. We will produce multipanel plots and write to output files (Figures 3a & 3b). The output files generated are PNG files and can be viewed within CASA by executing an external viewer program, e.g., <tt>!xv plotG192_plotcal_G0p1.png</tt>; or by running any number of image viewing applications such as xv, Preview, Gimp, Photoshop, etc., external to CASA at the OS level. (Note that the hardcopy only shows the first page):
Click on the Next button to navigate through the antennas. Click on the Quit button to exit the viewer.
 
We will now produce multipanel plots of the phase solutions, writing the plots to output files as well as on the screen (Figures 3a & 3b). The output files generated are PNG files and can be viewed within CASA by executing an external viewer program, e.g., <tt>!xv plotG192_plotcal_G0p1.png</tt>; or by running an image viewing application such as xv, Preview, Gimp, Photoshop, etc., external to CASA at the OS level. <!-- (Note that the hardcopy only shows the first page): -->


<source lang="python">
<source lang="python">
Line 371: Line 209:
         markersize=3.0, figfile='plotG192_plotcal_G0p2.png')
         markersize=3.0, figfile='plotG192_plotcal_G0p2.png')
</source>
</source>
{|
| [[Image:plotG192_plotcal_G0p1_4.0.png|200px|thumb|left|Figure 3a: plotcal G0 phase ant 0~15]]
| [[Image:plotG192_plotcal_G0p2_4.0.png|200px|thumb|center|Figure 3b: plotcal G0 phase ant 16~26]]
|}


<!--
<!--
Line 376: Line 219:
-->
-->


We can now solve for the residual delays using the <tt>gaintype='K'</tt> option in {{gaincal}}. Note that this currently does not do a global fringe-fitting solution for delays, but instead does a baseline-based delay solution per spw for all baselines to the reference antenna, treating these as antenna-based delays. In most cases, with high enough S/N to get baseline-based delay solutions, this will suffice.  We avoid the edge channels of each spectral window by selecting channels 5~122:
We can now solve for the residual delays using the parameter ''gaintype='K' ''option in {{gaincal}}. Note that this currently does not do a global fringe-fitting solution for delays, but instead does a baseline-based delay solution per spw for all baselines to the reference antenna, treating these as antenna-based delays. In most cases, with high enough S/N to get baseline-based delay solutions, this will suffice.  We avoid the edge channels of each spectral window by selecting channels 5~122:


<source lang="python">
<source lang="python">
Line 388: Line 231:
Note that we have also pre-applied our initial phase table <tt>calG192.G0</tt>.   
Note that we have also pre-applied our initial phase table <tt>calG192.G0</tt>.   


Alternatively, you can also derive a delay across all spws of a baseband. If this is desired, use ''combine='spw''' in {{gaincal}} and run the task for each baseband separately. The solutions from the second and following runs can be appended to the same calibration table via ''append=T''.
Alternatively, you can also derive a delay across all spws of a baseband. If this is desired, use parameter ''combine='spw''' in {{gaincal}} and run the task for each baseband separately. The solutions from the second and following runs can be appended to the same calibration table via parameter ''append=T''.
 
[[Image:plotG192_plotcal_delays.png|200px|thumb|right|Figure 4: plotcal K0 delay vs. antenna]]


Now plot the delays, in nanoseconds, as a function of antenna index (you will get one for each spw and polarization):
Now plot the delays, in nanoseconds, as a function of antenna index (you will get one for each spw and polarization):
Line 413: Line 258:




You will see, in the terminal window, some reports of solutions failing due to "Insufficient unflagged antennas"&#151;note that these are for bad channels that have been pre-flagged.
You will see in the terminal window some reports of solutions failing due to "Insufficient unflagged antennas"&#151;note that these are for bad channels that have been pre-flagged.


Plot the resulting bandpasses in amplitude and phase. Note that the first panel with ea01 is empty as it is completely flagged. Proceed to ea06 to see the plots as shown in Figures 5a, 5b, 6a, and 6b:
Plot the resulting bandpasses in amplitude and phase. Note that the first panel with ea01 is empty as it is completely flagged. Proceed to ea06 to see the plots as shown in Figures 5a, 5b, 6a, and 6b:
Line 444: Line 289:




Since there is no ''a priori'' spectral information for our chosen bandpass calibrator&#151;3C84&#151;we need to bootstrap to find its spectral index, then recalibrate with this information in order to avoid folding the intrinsic spectral shape of 3C84 into our calibration.
Since there is no ''a priori'' spectral information for our chosen bandpass calibrator of 3C84, we need to bootstrap to find its spectral index, then recalibrate with this information in order to avoid folding the intrinsic spectral shape of 3C84 into our calibration.


First, we again do a phase-only calibration solution, this time for both the bandpass and the flux density calibrator. This will correct for decorrelation of the signals. Again we use the channel range 60~68 and apply the bandpass and delay calibration tables:  
First, we again do a phase-only calibration solution, this time for both the bandpass and the flux density calibrator. This will correct for decorrelation of the signals. We again use the channel range 60~68 and apply the bandpass and delay calibration tables:  


<source lang="python">
<source lang="python">
Line 455: Line 300:
</source>
</source>


Now we are ready to solve for both, phase and gain for each scan:  
Now we are ready to solve for both phase and gain for each scan:  


<source lang="python">
<source lang="python">
Line 486: Line 331:
-->
-->


With gain solutions for the flux density and bandpass calibrators, we can now use {{fluxscale}} to scale the gain amplitudes of the bandpass calibrator:
With gain solutions for the flux density and bandpass calibrators, we can now use {{fluxscale}} to scale the gain amplitudes of the bandpass calibrator using those of the flux density calibrator:
 


<source lang="python">
<source lang="python">
Line 494: Line 340:
                   transfer='1', listfile='3C84.fluxinfo', fitorder=1)
                   transfer='1', listfile='3C84.fluxinfo', fitorder=1)
</source>
</source>
* <tt>flux1 = fluxscale(...)</tt>: we allow {{fluxscale}} to use the variable <tt>flux1</tt> for the output Python dictionary that is returned, which has information about the flux scaling. You can inspect the output dictionary flux1 by typing "print flux1" at the CASA command line.
* <tt>flux1 = fluxscale(...)</tt>: we allow {{fluxscale}} to use the variable <tt>flux1</tt> for the Python dictionary that is returned, which has information about the flux scaling. You can inspect the dictionary flux1 by typing "print flux1" at the CASA command line.
* <tt>fluxtable='calG192.F1'</tt>: this is the output scaled gain table. Since we are only using this to find the spectral index of 3C84, we won't be using this table.
* <tt>fluxtable='calG192.F1'</tt>: this is the output scaled gain table. Since we are only using this to find the spectral index of 3C84, we won't be using this table.
* <tt>listfile='3C84.fluxinfo'</tt>: an output file that contains the derived flux values and fit information.
* <tt>listfile='3C84.fluxinfo'</tt>: an output file that contains the derived flux values and fit information.
* <tt>fitorder=1</tt>: only find a spectral index, ignoring curvature in the spectrum.
* <tt>fitorder=1</tt>: only find a spectral index, ignoring curvature in the spectrum.
* <tt>reference='0'</tt>: the reference field ''from'' which the flux scaling is transferred (here: the flux density calibrator 3C147, field 0)
* <tt>transfer='1'</tt>: the target field ''to'' which the flux scaling is transferred (here: the bandpass calibrator 3C84, field 1)


The last line in the file (and displayed in the logger) shows:
The last line in the file (and displayed in the logger) shows:
Line 505: Line 354:


[[Image:PlotG192-3C84-fluxspec-4.5.png|200px|thumb|right|Figure 7: 3C84 flux values returned by fluxscale]]
[[Image:PlotG192-3C84-fluxspec-4.5.png|200px|thumb|right|Figure 7: 3C84 flux values returned by fluxscale]]
[[Image:ScreenshotPlotG192-setjy-bp-4.5.png|200px|thumb|right|Figure 8: plotms of model amp vs freq for 3C84]]


Using the information in the returned <tt>flux1</tt> dictionary, we can plot the derived spectrum (Figure 7):
Using the information in the returned <tt>flux1</tt> dictionary, we can plot the derived spectrum (Figure 7):
Line 518: Line 366:
</source>
</source>


(Note that in order to close indented python loops, conditions etc. you will have to press ''Enter'' again to execute the indented commands and to return to the CASA prompt.)


<source lang="python">
<source lang="python">
Line 542: Line 391:


We can use the model from {{fluxscale}} to fill the MODEL column with 3C84's spectral information using {{setjy}}. With ''standard='fluxscale''', we can directly use the <tt>flux1</tt> Python dictionary as input via ''fluxdict'':
We can use the model from {{fluxscale}} to fill the MODEL column with 3C84's spectral information using {{setjy}}. With ''standard='fluxscale''', we can directly use the <tt>flux1</tt> Python dictionary as input via ''fluxdict'':
[[Image:ScreenshotPlotG192-setjy-bp-4.5.png|200px|thumb|right|Figure 8: plotms of model amp vs freq for 3C84]]


<source lang="python">
<source lang="python">
Line 549: Line 400:
</source>
</source>


Checking with plotms that the data have been appropriately filled (Figure 8):
Check with plotms that the data have been appropriately filled (Figure 8):


<source lang="python">
<source lang="python">
Line 557: Line 408:
</source>
</source>


We redo the previous calibration using this new model information. Although the commands are the same as what we issued earlier, keep in mind that the model values for the bandpass calibrator have changed, and therefore the results of these calibration calculations will differ:
Next, we redo the previous calibration using this new model information. Although the commands are the same as issued earlier, keep in mind that the model values for the bandpass calibrator have changed and, therefore, the results of these calibration calculations will differ:


<source lang="python">
<source lang="python">
Line 577: Line 428:
</source>
</source>


Finally we inspect these solutions (Figures 9a, 9b, 10a, and 10b):
Finally, we inspect these solutions (Figures 9a, 9b, 10a, and 10b):


<source lang="python">
<source lang="python">
Line 603: Line 454:
|}
|}


They look virtually unchanged from the previous solutions, with the exception that the amplitude scaling is corrected for the spectrum of 3C84.  Now that we have the final version of our delay and bandpass calibration tables, calG192.K0.b and calG192.B0.b can be used for all subsequent calibration steps.  
They look virtually unchanged from the previous solutions with the exception that the amplitude scaling is corrected for the spectrum of 3C84.  We have the final version of our delay and bandpass calibration tables, '''calG192.K0.b''' and '''calG192.B0.b''', which can be used for all subsequent calibration steps.  


{{Checked 4.5.2}}
{{Checked 4.5.2}}
Line 610: Line 461:
-- Modifications: Jose Salcido (4.5.2. 2016/04/14) <br />
-- Modifications: Jose Salcido (4.5.2. 2016/04/14) <br />
-- Topical Guide: Juergen Ott (4.5.2, 2016/04/14) <br />
-- Topical Guide: Juergen Ott (4.5.2, 2016/04/14) <br />
-- Edits to Guide: Tony Perreault (4.5.2, 2016/04/26) <br />
-- Edits to Guide: Tony Perreault (4.5.2, 2016/05/18) <br />
-->
-->

Latest revision as of 14:41, 14 June 2016

This CASA Guide is for CASA version 4.5.2


Overview

For the standard VLA flux density calibrators 3C138, 3C147, 3C286 and 3C48, CASA includes spatial and spectral models that are applied during calibration. The models account for the source characteristics, resulting in calibration solutions that represent the instrumental and atmospheric corrections. These VLA standard calibrators, however, exhibit a negative spectral index and are relatively weak at high frequencies.

Although the standard VLA flux density calibrators are usually still bright enough for absolute flux density calibration, a good bandpass determination&#151;which is very important for spectral line observations&#151;requires large signal-to-noise ratios derived from either a long integration time or a very strong source (see the Spectral Line Guide for Observing). Observations of non-standard, but strong, bandpass calibrators are therefore common at high frequencies. Unfortunately, such sources are likely variable and no a priori flux density model is available. In particular, these sources exhibit an unknown and maybe variable spectral slope, which, if not accounted for, will create an error in the bandpass calibration. This tutorial describes how to model a spectral slope and how to correct the bandpass solution for this effect.

Data used in this guide are taken in wide 3-bit mode for the protostar G192.16-3.84 in Ka-band with basebands centered at 29 and 36.5 GHz. Each baseband has over 4 GHz of bandwidth comprising thirty-two 128-MHz spectral windows.

If you are new to CASA, or with VLA data reduction in CASA, it is strongly recommended that you start with the Getting Started in CASA guide, the IRC+10216 spectral line tutorial, or the VLA Continuum Tutorial 3C391 before proceeding with this tutorial.

Obtaining the Data

As this tutorial concerns bandpass calibration, all sources other than the flux density and bandpass calibrator scans were removed from the measurement set (MS). All pre-calibration steps including flagging, antenna position offsets, requantizer gains, opacity corrections, and gain-elevation curves were applied. The original data (TVER0004.sb14459364.eb14492359.56295.26287841435) can be obtained through the NRAO archive and has a raw size of 57.04 GB.

The trimmed measurement set can be downloaded directly from http://casa.nrao.edu/Data/EVLA/G192/G192-BP.ms.tar.gz (dataset size: 3.4 GB)

Your first step will be to unzip and untar the file in a terminal (before you start CASA):

tar -xzvf G192-BP.ms.tar.gz

Starting CASA

To start CASA, type:

casa

This will run a script initializing CASA and setting paths appropriately. The script will also create two files called ipython-<unique-stamp>.log (which contains a record of all the text you enter at the CASA prompt) as well as casapy-<unique-stamp>.log (which will contain all the messages that are printed to the CASA logger window). It is recommended that you keep your log files intact&#151;you may need them to remind you of the last step you completed in your data reduction. (It is also a good idea to include your log files when submitting a help desk ticket).

Once CASA has started, a logger window will appear. Note that you can rescale this window or change the font size (under the View menu option) as desired.

Examining the Measurement Set (MS)

We use listobs to summarize our MS:

# In CASA: listobs on the initial data set
listobs('G192-BP.ms', listfile='G192_listobs.txt')

This will write the output to a file called G192_listobs.txt, which we can print to the terminal using various Unix/Linux commands such as cat, less, or more:

# In CASA
cat G192_listobs.txt
================================================================================
           MeasurementSet Name:  /lustre/aoc/sciops/jott/casa/topicalguide/bandpass/new/G192-BP.ms      MS Version 2
================================================================================
   Observer: Dr. Debra Shepherd     Project: uid://evla/pdb/7303457  
Observation: EVLA
Data records: 1769355       Total elapsed time = 4563 seconds
   Observed from   03-Jan-2013/06:31:48.0   to   03-Jan-2013/07:47:51.0 (UTC)

   ObservationID = 0         ArrayID = 0
  Date        Timerange (UTC)          Scan  FldId FieldName             nRows     SpwIds   Average Interval(s)    ScanIntent
  03-Jan-2013/06:31:48.0 - 06:36:42.0     6      0 3C147                   704865  [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63]  [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5.94, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6] [CALIBRATE_FLUX#UNSPECIFIED,OBSERVE_TARGET#UNSPECIFIED]
              07:40:27.0 - 07:47:51.0    64      1 3c84-J0319+413         1064490  [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]  [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6] [CALIBRATE_BANDPASS#UNSPECIFIED,OBSERVE_TARGET#UNSPECIFIED]
           (nRows = Total number of rows per scan) 
Fields: 2
  ID   Code Name                RA               Decl           Epoch   SrcId      nRows
  0    E    3C147               05:42:36.137916 +49.51.07.23356 J2000   0         704865
  1    F    3c84-J0319+413      03:19:48.160102 +41.30.42.10305 J2000   1        1064490
Spectral Windows:  (64 unique spectral windows and 1 unique polarization setups)
  SpwID  Name            #Chans   Frame   Ch0(MHz)  ChanWid(kHz)  TotBW(kHz) CtrFreq(MHz) BBC Num  Corrs  
  0      EVLA_KA#A1C1#2     128   TOPO   34476.000      1000.000    128000.0  34539.5000       10  RR  LL
  1      EVLA_KA#A1C1#3     128   TOPO   34604.000      1000.000    128000.0  34667.5000       10  RR  LL
  2      EVLA_KA#A1C1#4     128   TOPO   34732.000      1000.000    128000.0  34795.5000       10  RR  LL
  3      EVLA_KA#A1C1#5     128   TOPO   34860.000      1000.000    128000.0  34923.5000       10  RR  LL

<snip>

  13     EVLA_KA#A1C1#15    128   TOPO   36140.000      1000.000    128000.0  36203.5000       10  RR  LL
  14     EVLA_KA#A1C1#16    128   TOPO   36268.000      1000.000    128000.0  36331.5000       10  RR  LL
  15     EVLA_KA#A1C1#17    128   TOPO   36396.000      1000.000    128000.0  36459.5000       10  RR  LL
  16     EVLA_KA#A2C2#18    128   TOPO   36476.000      1000.000    128000.0  36539.5000       11  RR  LL
  17     EVLA_KA#A2C2#19    128   TOPO   36604.000      1000.000    128000.0  36667.5000       11  RR  LL
  18     EVLA_KA#A2C2#20    128   TOPO   36732.000      1000.000    128000.0  36795.5000       11  RR  LL
 
<snip>

  29     EVLA_KA#A2C2#31    128   TOPO   38140.000      1000.000    128000.0  38203.5000       11  RR  LL
  30     EVLA_KA#A2C2#32    128   TOPO   38268.000      1000.000    128000.0  38331.5000       11  RR  LL
  31     EVLA_KA#A2C2#33    128   TOPO   38396.000      1000.000    128000.0  38459.5000       11  RR  LL
  32     EVLA_KA#B1D1#34    128   TOPO   26976.000      1000.000    128000.0  27039.5000       13  RR  LL
  33     EVLA_KA#B1D1#35    128   TOPO   27104.000      1000.000    128000.0  27167.5000       13  RR  LL
  34     EVLA_KA#B1D1#36    128   TOPO   27232.000      1000.000    128000.0  27295.5000       13  RR  LL

<snip>

  45     EVLA_KA#B1D1#47    128   TOPO   28640.000      1000.000    128000.0  28703.5000       13  RR  LL
  46     EVLA_KA#B1D1#48    128   TOPO   28768.000      1000.000    128000.0  28831.5000       13  RR  LL
  47     EVLA_KA#B1D1#49    128   TOPO   28896.000      1000.000    128000.0  28959.5000       13  RR  LL
  48     EVLA_KA#B2D2#50    128   TOPO   28976.000      1000.000    128000.0  29039.5000       14  RR  LL
  49     EVLA_KA#B2D2#51    128   TOPO   29104.000      1000.000    128000.0  29167.5000       14  RR  LL
  50     EVLA_KA#B2D2#52    128   TOPO   29232.000      1000.000    128000.0  29295.5000       14  RR  LL

<snip>

  61     EVLA_KA#B2D2#63    128   TOPO   30640.000      1000.000    128000.0  30703.5000       14  RR  LL
  62     EVLA_KA#B2D2#64    128   TOPO   30768.000      1000.000    128000.0  30831.5000       14  RR  LL
  63     EVLA_KA#B2D2#65    128   TOPO   30896.000      1000.000    128000.0  30959.5000       14  RR  LL
Sources: 128
  ID   Name                SpwId RestFreq(MHz)  SysVel(km/s) 
  0    3C147               0     -              -            
  0    3C147               1     -              -            
  0    3C147               2     -              -            

<snip>

  0    3C147               61    -              -            
  0    3C147               62    -              -            
  0    3C147               63    -              -            
  1    3c84-J0319+413      0     -              -            
  1    3c84-J0319+413      1     -              -            
  1    3c84-J0319+413      2     -              -            

<snip>

  1    3c84-J0319+413      61    -              -            
  1    3c84-J0319+413      62    -              -            
  1    3c84-J0319+413      63    -              -            

<snip>

This small MS contains only scans on the flux density calibrator 3C147 (field 0) and the bandpass calibrator 3C84 (field 1). Both fields have 64 spectral windows (spws); each spw is comprised of 128 channels, each channel being 1 MHz wide, for a total bandwidth of 128 MHz / spw.

Setting the Model of the Flux Density Calibrator

To start, we insert the spectral (using the 'Perley-Butler 2013' standard) and spatial (3C147_A.im for Ka-band) models for the flux density calibrator 3C147 (field 0) with the setjy task:

# In CASA: model for the flux density calibrator
setjy(vis='G192-BP.ms', field='0', scalebychan=True, \
      standard='Perley-Butler 2013', model='3C147_A.im')
Figure 1: plotms of model amp vs freq for 3C147
  • scalebychan=True: If scalebychan=False setjy would use a single value per spectral window.

Inspecting the logger report shows that 3C147 has amplitudes ranging from ~1.0-1.47 Jy across all spws.

We can plot the model data using plotms (Figure 1):

# In CASA
plotms(vis='G192-BP.ms', field='0', antenna='ea03', \
       xaxis='freq', yaxis='amp', ydatacolumn='model',coloraxis='ant2')

This plot shows baselines to antenna ea03. Since we provided both a spectral and a spatial model for this well resolved calibrator, each baseline has a somewhat different behavior.

Calibrating delays and initial bandpass solutions

As a first step, we need to specify a reference antenna for all phase calibrations. It is desirable to use an antenna that is near the center of the array and has the least amount of calibrator data flagged. The array can be mapped with plotants:

# In CASA: plotting antenna locations
plotants(vis='G192-BP.ms')

Although the plot is a bit crowded (Figure 2), a zooming in (with the magnifying glass icon) shows that ea05 is located close to the center. It also has a comparably small number of flags and we will use this antenna as our reference.

Figure 2: plotants plotter

We start with a phase-only, time-dependent calibration solution for the bandpass calibrator. Solutions for each integration will remove most of the decorrelation of the signal. For best results, we will derive the phase variations from a narrow range of channels (60~68) near the centers of each spws:

# In CASA: phase only calibration
gaincal(vis='G192-BP.ms', caltable='calG192.G0', \
        field='1', spw='*:60~68', \
        gaintype='G', refant='ea05', calmode='p', \
        solint='int', minsnr=3)
  • refant='ea05' : Use ea05 as the reference antenna
  • solint='int' : Do a per-integration solve (every 6 seconds, since we've time-averaged the data).
  • minsnr=3 : Apply a minimum signal-to-noise cutoff. Solutions with less than this value will be flagged.
  • gaintable is not set here as we have already applied pre-calibrations.

Plot the phase solutions (using full phase range -180 to 180 instead of autorange):

# In CASA
plotcal(caltable='calG192.G0', xaxis='time', yaxis='phase', \
        iteration='antenna', plotrange=[-1,-1,-180,180])

Click on the Next button to navigate through the antennas. Click on the Quit button to exit the viewer.

We will now produce multipanel plots of the phase solutions, writing the plots to output files as well as on the screen (Figures 3a & 3b). The output files generated are PNG files and can be viewed within CASA by executing an external viewer program, e.g., !xv plotG192_plotcal_G0p1.png; or by running an image viewing application such as xv, Preview, Gimp, Photoshop, etc., external to CASA at the OS level.

# In CASA
plotcal(caltable='calG192.G0', xaxis='time', yaxis='phase', \
        antenna='0~10,12~15', subplot=531, iteration='antenna', \
        plotrange=[-1,-1,-180,180], fontsize=8.0, \
        markersize=3.0, figfile='plotG192_plotcal_G0p1.png')
plotcal(caltable='calG192.G0', xaxis='time', yaxis='phase', \
        antenna='16~26', subplot=531, iteration='antenna', \
        plotrange=[-1,-1,-180,180], fontsize=8.0, \
        markersize=3.0, figfile='plotG192_plotcal_G0p2.png')
Figure 3a: plotcal G0 phase ant 0~15
Figure 3b: plotcal G0 phase ant 16~26


We can now solve for the residual delays using the parameter gaintype='K' option in gaincal. Note that this currently does not do a global fringe-fitting solution for delays, but instead does a baseline-based delay solution per spw for all baselines to the reference antenna, treating these as antenna-based delays. In most cases, with high enough S/N to get baseline-based delay solutions, this will suffice. We avoid the edge channels of each spectral window by selecting channels 5~122:

# In CASA: residual delays
gaincal(vis='G192-BP.ms', caltable='calG192.K0', \
        field='1', spw='*:5~122', gaintype='K', \
        gaintable=['calG192.G0'],
        refant='ea05', solint='inf', minsnr=3)

Note that we have also pre-applied our initial phase table calG192.G0.

Alternatively, you can also derive a delay across all spws of a baseband. If this is desired, use parameter combine='spw' in gaincal and run the task for each baseband separately. The solutions from the second and following runs can be appended to the same calibration table via parameter append=T.

Figure 4: plotcal K0 delay vs. antenna

Now plot the delays, in nanoseconds, as a function of antenna index (you will get one for each spw and polarization):

# In CASA
plotcal(caltable='calG192.K0', xaxis='antenna', yaxis='delay')

The delays range from around -5 to 4 nanoseconds (Figure 4).

Now solve for the antenna bandpasses using the previously generated tables calG192.G0 and calG192.K0:

# In CASA: antenna bandpasses
bandpass(vis='G192-BP.ms', caltable='calG192.B0', \
         gaintable=['calG192.G0', 'calG192.K0'], \
         field='1', refant='ea05', solnorm=False, \
         bandtype='B', solint='inf')

WARNING: You must set solnorm=False here or later on you will find some offsets among spws due to the way the amplitude scaling adjusts weights internally during solving.


You will see in the terminal window some reports of solutions failing due to "Insufficient unflagged antennas"&#151;note that these are for bad channels that have been pre-flagged.

Plot the resulting bandpasses in amplitude and phase. Note that the first panel with ea01 is empty as it is completely flagged. Proceed to ea06 to see the plots as shown in Figures 5a, 5b, 6a, and 6b:

# In CASA
plotcal(caltable='calG192.B0', xaxis='freq', yaxis='amp', \
        spw='0~31', iteration='antenna')
#
plotcal(caltable='calG192.B0', xaxis='freq', yaxis='amp', \
        spw='32~63', iteration='antenna')
#
plotcal(caltable='calG192.B0', xaxis='freq', yaxis='phase', \
        iteration='antenna', spw='0~31', \
        plotrange=[-1,-1,-180,180])
#
plotcal(caltable='calG192.B0', xaxis='freq', yaxis='phase', \
        iteration='antenna', spw='32~63', \
        plotrange=[-1,-1,-180,180])
Figure 5a: plotcal B0 bandpass amp ant ea06 spw 0-31
Figure 5b: plotcal B0 bandpass amp ant ea06 spw 32-63
Figure 6a: plotcal B0 bandpass phase ant ea06 spw 0-31
Figure 6b: plotcal B0 bandpass phase ant ea06 spw 32-63

Bootstrapping the bandpass calibrator spectrum

Since there is no a priori spectral information for our chosen bandpass calibrator of 3C84, we need to bootstrap to find its spectral index, then recalibrate with this information in order to avoid folding the intrinsic spectral shape of 3C84 into our calibration.

First, we again do a phase-only calibration solution, this time for both the bandpass and the flux density calibrator. This will correct for decorrelation of the signals. We again use the channel range 60~68 and apply the bandpass and delay calibration tables:

# In CASA: flux and bandpass calibrators gain
gaincal(vis='G192-BP.ms', caltable='calG192.G1p', field='0,1', \
        gaintable=['calG192.K0', 'calG192.B0'], \
        gaintype='G', refant='ea05', calmode='p', solint='int', minsnr=3)

Now we are ready to solve for both phase and gain for each scan:

# In CASA: flux and bandpass calibrators gain
gaincal(vis='G192-BP.ms', caltable='calG192.G1', field='0,1', \
        gaintable=['calG192.K0', 'calG192.B0','calG192.G1p'], \
        gaintype='G', refant='ea05', calmode='ap', solint='inf', minsnr=3)


With gain solutions for the flux density and bandpass calibrators, we can now use fluxscale to scale the gain amplitudes of the bandpass calibrator using those of the flux density calibrator:


# In CASA: bandpass calibrator gain amplitudes scaling
flux1 = fluxscale(vis='G192-BP.ms', caltable='calG192.G1', \
                  fluxtable='calG192.F1', reference='0', \
                  transfer='1', listfile='3C84.fluxinfo', fitorder=1)
  • flux1 = fluxscale(...): we allow fluxscale to use the variable flux1 for the Python dictionary that is returned, which has information about the flux scaling. You can inspect the dictionary flux1 by typing "print flux1" at the CASA command line.
  • fluxtable='calG192.F1': this is the output scaled gain table. Since we are only using this to find the spectral index of 3C84, we won't be using this table.
  • listfile='3C84.fluxinfo': an output file that contains the derived flux values and fit information.
  • fitorder=1: only find a spectral index, ignoring curvature in the spectrum.
  • reference='0': the reference field from which the flux scaling is transferred (here: the flux density calibrator 3C147, field 0)
  • transfer='1': the target field to which the flux scaling is transferred (here: the bandpass calibrator 3C84, field 1)


The last line in the file (and displayed in the logger) shows:

Fitted spectrum for 3c84-J0319+413 with fitorder=1: Flux density = 29.0282 +/- 0.0308648 (freq=32.5128 GHz) spidx=-0.538758 +/- 0.00882913
Figure 7: 3C84 flux values returned by fluxscale

Using the information in the returned flux1 dictionary, we can plot the derived spectrum (Figure 7):

# In CASA
freq = flux1['freq'] / 1e9
spw_list = range(0,64)
spw_str = []
for i in spw_list:
   thisspw = str(i)
   spw_str.append(thisspw)

(Note that in order to close indented python loops, conditions etc. you will have to press Enter again to execute the indented commands and to return to the CASA prompt.)

# In CASA
bootstrapped_fluxes = []
for j in spw_str:
    thisflux = flux1['1'][j]['fluxd'][0]
    if thisflux ==None:
        continue
    else:
        bootstrapped_fluxes.append(thisflux)


# In CASA - this section creates the plot seen in Figure 7
pl.clf()
pl.plot(freq, bootstrapped_fluxes, 'bo')
pl.xlabel('Frequency (GHz)')
pl.ylabel('Flux Density (Jy)')
pl.title('3C84')
pl.show()

We can use the model from fluxscale to fill the MODEL column with 3C84's spectral information using setjy. With standard='fluxscale', we can directly use the flux1 Python dictionary as input via fluxdict:

Figure 8: plotms of model amp vs freq for 3C84
# In CASA: spectral information
setjy(vis='G192-BP.ms', field='1', scalebychan=True, \
      standard = 'fluxscale', fluxdict=flux1)

Check with plotms that the data have been appropriately filled (Figure 8):

# In CASA
plotms(vis='G192-BP.ms', field='1', antenna='ea05&ea02', \
       xaxis='freq', yaxis='amp', ydatacolumn='model')

Next, we redo the previous calibration using this new model information. Although the commands are the same as issued earlier, keep in mind that the model values for the bandpass calibrator have changed and, therefore, the results of these calibration calculations will differ:

# In CASA: phase only recalibration
gaincal(vis='G192-BP.ms', caltable='calG192.G0.b', \
        field='1', spw='*:60~68', \
        gaintype='G', refant='ea05', calmode='p', \
        solint='int', minsnr=3) 
# In CASA: residual delays recalibration
gaincal(vis='G192-BP.ms', caltable='calG192.K0.b', \
        gaintable=['calG192.G0.b'], \
        field='1', spw='*:5~122', gaintype='K', \
        refant='ea05', solint='inf', minsnr=3)
# In CASA: antenna bandpasses recalibration
bandpass(vis='G192-BP.ms', caltable='calG192.B0.b', \
         gaintable=['calG192.G0.b', 'calG192.K0.b'], \
         field='1', refant='ea05', solnorm=False, \
         bandtype='B', solint='inf')

Finally, we inspect these solutions (Figures 9a, 9b, 10a, and 10b):

# In CASA - Figure 9a
plotcal(caltable='calG192.B0.b', xaxis='freq', yaxis='amp', \
        spw='0~31', iteration='antenna')
# Figure 9b
plotcal(caltable='calG192.B0.b', xaxis='freq', yaxis='amp', \
        spw='32~63', iteration='antenna')
# Figure 10a
plotcal(caltable='calG192.B0.b', xaxis='freq', yaxis='phase', \
        iteration='antenna', spw='0~31', \
        plotrange=[-1,-1,-180,180])
# Figure 10b
plotcal(caltable='calG192.B0.b', xaxis='freq', yaxis='phase', \
        iteration='antenna', spw='32~63', \
        plotrange=[-1,-1,-180,180])
Figure 9a: plotcal B0 bootstrapped bandpass amp ant ea06 spw 0-31
Figure 9b: plotcal B0 bootstrapped bandpass amp ant ea06 spw 32-63
Figure 10a: plotcal B0 bootstrapped bandpass phase ant ea06 spw 0-31
Figure 10b: plotcal B0 bootstrapped bandpass phase ant ea06 spw 32-63

They look virtually unchanged from the previous solutions with the exception that the amplitude scaling is corrected for the spectrum of 3C84. We have the final version of our delay and bandpass calibration tables, calG192.K0.b and calG192.B0.b, which can be used for all subsequent calibration steps.

Last checked on CASA Version 4.5.2