M100 Band3 Combine 4.2.2: Difference between revisions

From CASA Guides
Jump to navigationJump to search
Cbrogan (talk | contribs)
Jmeyer (talk | contribs)
 
(96 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<div style="background-color:#E0FFFF;border:4px solid #FF9966;">
<div style="font-size:250%; color:red; text-align:center;">
This page is currently under construction.
</div>
<div style="font-size:200%; color:black; text-align:center">
DO NOT USE IT.
</div>
<div style="font-size:150%; color:black; text-align:center">
To navigate the CASAguides pages, visit [http://casaguides.nrao.edu/
casaguides.nrao.edu
]
</div>
</div>
= Overview =
= Overview =


This guide describes how to combine the 7m and 12m interferometric data and then how to feather the resulting image with the total power TP image. All of the data for this SV project can be found at https://almascience.nrao.edu/alma-data/science-verification. The guide has been written for data reduced in CASA 4.3.0 or later and assumes that all calibration tables (Tsys and gain tables) have been applied to the visibility weights using calwt=True. If either of these is not the case for your data, '''do not follow this guide.'''


= Combine and Image the 7m+12m =
In order to run this guide you will need to:


* Either download the fully calibrated 7m data (i.e., M100_Band3_7m_CalibratedData.tgz) or download the uncalibrated 7m data and the relevant, standard calibration scripts available (here)


== Split off CO spws ==
* Either download the fully calibrated 12m data (i.e. M100_Band3_12m_CalibratedData.tgz) or download the uncalibrated 12m data and the relevant, standard calibration scripts available (here). Note that this is a '''new''' calibration of the same data that were released previously, and so the data reduction path has been updated to current best practices and starts from the raw data files called ASDMs (ALMA Science Data Model). '''Do not use the previously released uncalibrated or calibrated data.'''


* Either run the [[M100_Band3_SingleDish_4.3]] guide to calibrate and image the Total Power data or download the final image (i.e. M100_TP_Image.tgz)
==Confirm your version of CASA==
This guide has been written for CASA release 4.3.0.  Please confirm your version before proceeding.
<source lang="python">
<source lang="python">
# In CASA
# In CASA
os.system('m100_*m.ms.listobs')
version = casadef.casa_version
print "You are using " + version
if (version < '4.3.0'):
    print "YOUR VERSION OF CASA IS TOO OLD FOR THIS GUIDE."
    print "PLEASE UPDATE IT BEFORE PROCEEDING."
else:
    print "Your version of CASA is appropriate for this guide."
</source>
 
= Combine and Image the 7m+12m Interferometric Data =
 
 
== Split off CO spectral windows (SPWs) ==
 
<source lang="python">
# In CASA
os.system('rm -rf m100_*m.ms.listobs')
listobs('M100_Band3_12m_CalibratedData.ms',listfile='m100_12m.ms.listobs')
listobs('M100_Band3_12m_CalibratedData.ms',listfile='m100_12m.ms.listobs')
listobs('M100_Band3_7m_CalibratedData.ms',listfile='m100_7m.ms.listobs')
listobs('M100_Band3_7m_CalibratedData.ms',listfile='m100_7m.ms.listobs')
</source>
</source>


Below are the observation and spectral window tables from the listobs.  
Running the task "listobs" provides the setups used in the observations at a glance. Below are the first target scans of the 12m and 7m observations and the spectral window tables as generated by listobs. The six 7m data sets were taken with two slightly different correlator setups (one with four SPWs and the other with two SPWs), so the concatenated data set has six total SPWs.  


<pre style="background-color: #fffacd;">
<pre style="background-color: #fffacd;">
Line 20: Line 57:


ObservationID = 0        ArrayID = 0
ObservationID = 0        ArrayID = 0
   Date        Timerange (UTC)          Scan  FldId FieldName            nRows    SpwIds  Average Interval(s)     
   Date        Timerange (UTC)          Scan  FldId FieldName            nRows    SpwIds  Average Interval(s)    ScanIntent
   10-Sep-2011/18:28:43.4 - 18:41:00.4   11      1 M100                      1320 [0, 1, 2, 3]  [6.05, 6.05, 6.05, 6.05]  
   10-Aug-2011/19:38:05.8 - 19:50:22.8   11      1 M100                      1500 [0,1,2,3]  [6.05, 6.05, 6.05, 6.05] [CALIBRATE_WVR#ON_SOURCE,OBSERVE_TARGET#ON_SOURCE]


Spectral Windows:  (4 unique spectral windows and 1 unique polarization setups)
Spectral Windows:  (4 unique spectral windows and 1 unique polarization setups)
   SpwID  Name  #Chans  Frame  Ch1(MHz)  ChanWid(kHz)  TotBW(kHz) BBC Num  Corrs
   SpwID  Name  #Chans  Frame  Ch0(MHz)  ChanWid(kHz)  TotBW(kHz) CtrFreq(MHz) BBC Num  Corrs
   0              3840  TOPO  113726.419      488.281  1875000.0       1  XX  YY
   0              3840  TOPO  113726.419      488.281  1875000.0 114663.6750        1  XX  YY
   1              3840  TOPO  111851.419      488.281  1875000.0       2  XX  YY
   1              3840  TOPO  111851.419      488.281  1875000.0 112788.6750        2  XX  YY
   2              3840  TOPO  103663.431      -488.281  1875000.0       3  XX  YY
   2              3840  TOPO  103663.431      -488.281  1875000.0 102726.1750        3  XX  YY
   3              3840  TOPO  101850.931      -488.281  1875000.0       4  XX  YY
   3              3840  TOPO  101850.931      -488.281  1875000.0 100913.6750        4  XX  YY


7m data:
7m data:


ObservationID = 0        ArrayID = 0
ObservationID = 0        ArrayID = 0
   Date        Timerange (UTC)          Scan  FldId FieldName            nRows    SpwIds  Average Interval(s)     
   Date        Timerange (UTC)          Scan  FldId FieldName            nRows    SpwIds  Average Interval(s)    ScanIntent
   17-Mar-2013/04:44:04.3 - 04:50:43.7    11      1 M100                      168 [0, 1]  [10.1, 10.1]  
   17-Mar-2013/04:44:04.3 - 04:50:43.7    11      1 M100                      261 [0,1,2,3]  [10.1, 10.1, 10.1, 10.1] [OBSERVE_TARGET#ON_SOURCE]


Spectral Windows:  (4 unique spectral windows and 1 unique polarization setups)
Spectral Windows:  (6 unique spectral windows and 1 unique polarization setups)
   SpwID  Name                          #Chans  Frame  Ch1(MHz)  ChanWid(kHz)  TotBW(kHz) BBC Num  Corrs
   SpwID  Name                          #Chans  Frame  Ch0(MHz)  ChanWid(kHz)  TotBW(kHz) CtrFreq(MHz) BBC Num  Corrs
   0      ALMA_RB_03#BB_3#SW-01#FULL_RES  4080  TOPO  111811.300      488.281  1992187.5       3  XX  YY
   0     ALMA_RB_03#BB_1#SW-01#FULL_RES  4080  TOPO  101945.850      -488.281  1992187.5 100950.0000        1  XX  YY
   1     ALMA_RB_03#BB_4#SW-01#FULL_RES  4080  TOPO  113686.300      488.281  1992187.5       4  XX  YY
  1      ALMA_RB_03#BB_2#SW-01#FULL_RES  4080  TOPO  103761.000      -488.281  1992187.5 102765.1500        2  XX  YY
   2     ALMA_RB_03#BB_1#SW-01#FULL_RES  4080  TOPO  111798.250      488.281  1992187.5       1  XX  YY
  2     ALMA_RB_03#BB_3#SW-01#FULL_RES  4080  TOPO  111811.300      488.281  1992187.5 112807.1500        3  XX  YY
   3     ALMA_RB_03#BB_2#SW-01#FULL_RES  4080  TOPO  113673.250      488.281  1992187.5       2  XX  YY
   3     ALMA_RB_03#BB_4#SW-01#FULL_RES  4080  TOPO  113686.300      488.281  1992187.5 114682.1500        4  XX  YY
   4     ALMA_RB_03#BB_1#SW-01#FULL_RES  4080  TOPO  111798.250      488.281  1992187.5 112794.1000        1  XX  YY
   5     ALMA_RB_03#BB_2#SW-01#FULL_RES  4080  TOPO  113673.250      488.281  1992187.5 114669.1000        2  XX  YY
</pre>
</pre>


Examination of the listobs files shows that the CO is spw=0 for the 12m data and in spws='1,3' for the 7m data. The 12m data has 48 fields and the 7m has 24 fields. There are two for the 7m data because some of the data was taken with a slightly different correlator setup.
<figure id="12m_mosaic.png">
[[Image:12m_mosaic.png|300px|thumb|right|<caption>FOV of 12m mosaic.</caption>]]
</figure>
 
<figure id="7m_mosaic.png">
[[Image:7m_mosaic.png|300px|thumb|right|<caption>FOV of 7m mosaic.</caption>]]
</figure>
 
Examination of the listobs files shows that the CO is in SPW='0' for the 12m data and in SPW='3,5' for the 7m data. There are two SPWs containing CO in the 7m data due to the slightly differing correlator setups.


Also note that the integration time per visibility (average interval parameter in listobs) is different:
Also note that the integration time per visibility (average interval parameter in listobs) is different:
6.05s for the 12m data and 10.1s for the 7m. This will be important to know later in order to correctly weight the combined data.
6.05s for the 12m data and 10.1s for the 7m. This will be important to know later when we check the visibility weights.
 
Next we split out the CO spectral windows.


<source lang="python">
<source lang="python">
Line 57: Line 106:
os.system('rm -rf m100_7m_CO.ms')
os.system('rm -rf m100_7m_CO.ms')
split(vis='M100_Band3_7m_CalibratedData.ms',
split(vis='M100_Band3_7m_CalibratedData.ms',
       outputvis='m100_7m_CO.ms',spw='1,3',field='M100',
       outputvis='m100_7m_CO.ms',spw='3,5',field='M100',
       datacolumn='data',keepflags=False)
       datacolumn='data',keepflags=False)
</source>
</source>


Because the continuum is too weak to contribute to a 5km/s
Also of interest is that the 12m data has 47 fields and the 7m has 23 fields (not shown in the excerpts above). The difference in number of pointings is because the 7m antennas have a FWHP (full width half power) primary beam diameter that is 12/7 times larger than the 12m antennas. '''One easy way to see how the mosaics compare is to install the AnalysisUtils package (see [[Analysis_Utilities]])'''. Then with AnalysisUtils you can make the following plots (look at the listobs to obtain the sourceid):
channel we will forgo the the continuum subtraction step.


== Concat with 1/sigma<sup>2</sup> scaling of Weights ==
<source lang="python">
# In CASA
os.system('rm -rf *m_mosaic.png')
au.plotmosaic('m100_12m_CO.ms',sourceid='0',figfile='12m_mosaic.png')
au.plotmosaic('m100_7m_CO.ms',sourceid='0',figfile='7m_mosaic.png')
</source>
 
We see that the mosaics cover a common area but that the 7m mosaic is a bit larger. This means that the outer edges of the combined mosaic will be noisier than expected if they overlapped perfectly; this is just something to keep in mind. If you had the case where the mosaic coverages are dramatically different, it would be best to exclude the completely non-overlapping fields from the combination.
 
NOTE: At this stage one would typically do continuum subtraction (if there is any). However we already know from the individual data reductions that the 3mm continuum emission is quite weak and does not significantly contribute to a 5km/s channel, so we will forgo the the continuum subtraction step. Examples of how to do this if you are so inclined are located in various other ALMA CASAguides.
 
== Checking the weights and concatenating the data ==


<figure id="7m_WT.png">
<figure id="7m_WT.png">
[[File:12m_WT.png|200px|thumb|right|<caption> 7m weights.</caption>]]
[[File:12m_WT.png|200px|thumb|right|<caption> 12m weights.</caption>]]
</figure>
</figure>


<figure id="12m_WT.png">
<figure id="12m_WT.png">
[[File:7m_WT.png|200px|thumb|right|<caption> 12m weights.</caption>]]
[[File:7m_WT.png|200px|thumb|right|<caption> 7m weights.</caption>]]
</figure>
</figure>


When combining data with disparate properties it is very important
When combining data with disparate properties it is very important that the relative weights of each visibility be in the correct proportion to the other data according to the radiometer equation. Formally, the
that the relative weights of each visibility be in the correct
visibility weights should be proportional to 1/sigma<sup>2</sup> where sigma is the variance or rms noise of a given visibility.
proportion to the other data according to the radiometer equation.  
 
Formally, the
Assuming that the 7m and 12m antennas have similar apperture and quantization efficiencies (a reasonable assumption since they were designed this way), the rms noise in a single channel for a single visibility is:
visibility weights should be proportional to 1/sigma**2 where sigma
 
is the variance or rms noise of a given visibility.
<math>
\sigma_{ij}=\frac{2k}{A_{eff}}
</math>
<math>
\sqrt{\frac{T_{sys,i} T_{sys,j}}{\Delta\nu_{ch} t_{ij}}},
</math>
 
where k is Boltzmann's constant, A<sub>eff</sub> is the effective antenna area, T<sub>sys,i</sub> is the system temperature for antenna i, &Delta;&nu;<sub>ch</sub> is the channel width, and t<sub>ij</sub> is the integration time per visibility.


CASA currently scales the weights by 1/[(Tsys(i) * Tsys(j)] if
CASA initially scales the weights by 2&Delta;&nu;<sub>ch</sub>&Delta;t<sub>ij</sub>, and after the Tsys table applycal step of the calibration process, it further scales the weights by 1/[(Tsys(i) * Tsys(j)] as long as calwt=True. In the subsequent gain calibration table applycal step of the calibration, the weights are further scaled by a factor of [(gain(i))<sup>2</sup> * (gain(j))<sup>2</sup>]. The gains should change very little from antenna to antenna, so this scaling is effectively the average gain<sup>4</sup> (again, as long as calwt=True). In the calibration scripts for all executions of the 12m and 7m data, found (here), both applycal steps set calwt=True. To verify, we plot the weights of the 7m and 12m data and measure their ratio to be, on average, 7m/12m ~ 0.055/0.3 ~ 0.18. Note that in the plots the points are colored by SPW, so there is only one 12m CO SPW but there are two 7m CO SPWs, and that no averaging can be turned on when plotting the weights.  
calwt=True for the Tsys table applycal. To verify, we plot the  
weights of the 7m and 12m data. No averaging can be turned on  
when plotting the weights.


<source lang="python">
<source lang="python">
# In CASA
# In CASA
os.system('rm -rf 7m_WT.png 12m_WT.png')
os.system('rm -rf 7m_WT.png 12m_WT.png')
plotms(vis='m100_12m_CO.ms',yaxis='wt',xaxis='uvdist',spw='0~2:200',
plotms(vis='m100_12m_CO.ms',yaxis='wt',xaxis='uvdist',spw='0:200',
       coloraxis='spw',plotfile='12m_WT.png')
       coloraxis='spw',plotfile='12m_WT.png')
#
#
plotms(vis='m100_7m_CO.ms',yaxis='wt',xaxis='uvdist',spw='0~2:200',
plotms(vis='m100_7m_CO.ms',yaxis='wt',xaxis='uvdist',spw='0~1:200',
       coloraxis='spw',plotfile='7m_WT.png')
       coloraxis='spw',plotfile='7m_WT.png')
</source>
</source>


As you can see from these plots, the weights are quite similar at this
<figure id="combine_CO_WT.png">
stage because the data were taken under similar weather conditions and
[[File:combine_CO_WT.png|200px|thumb|right|<caption> 7m and 12m weights after concatenation.</caption>]]
hence Tsys.
 
Assuming that the 7m and 12m antennas have similar apperture and quantization
efficiencies (a reasonable assumption since they were designed this way), the rms noise in a single channel for a single visibility is:
 
<math>
\sigma_{ij}=\frac{2k}{A_{eff}}
</math>
<math>
\sqrt{\frac{T_{sys,i} T_{sys,j}}{\Delta\nu_{ch} t_{ij}}}
</math>
 
<figure id="Intcombo_0.193_WT.png">
[[File:Intcombo_0.193_WT.png|200px|thumb|right|<caption> 7m and 12m weights after scaling by relative sensitivity.</caption>]]
</figure>
</figure>


Where k is Boltzmann's constant, A<sub>eff</sub> is the effective antenna
The two key things that are different between the 7m and 12m-array data are that the effective dish areas are different by (7/12)<sup>2</sup>, and the integration times are different by sqrt(10.1/6.05). Since dish area is in the numerator of the radiometer equation and integration time per visibility is in the denominator, and assuming the weight of an individual visibility is proportional to 1/sigma<sup>2</sup>, the ratio of the weights should be (7./12.)<sup>4</sup> x (10.1/6.05) = 0.19. This is very close to the value we measure for the ratio of the weights, particularly given that the 7m flux calibration relied on a source which changed substantially over the course of the six 7m-array observations.  
area, T<sub>sys,i</sub> is the system temperature for antenna i, 
&Delta;&nu;<sub>ch</sub> is the channel width, and t<sub>ij</sub>
is the integration time per visibility.


The two key things that are different between the 7m and 12m-array data are
Now concatenate the two data sets and plot the concatenated weights to verify that they are as expected.
that the effective dish Areas are different by (7/12)<sup>2</sup> and the  
integration
times are different by sqrt(10.1/6.05). Since dish area is in the numerator of
the radiometer equation and integration time per visibility is in the
denominator, and assuming WT propto 1/sigma<sup>2</sup>,
the '''7m weight should be scaled by: (7./12.)<sup>4</sup> x (10.1/6.05) = 0.193'''
to account for the difference in telescope size and integration time
per visibility.


<source lang="python">
<source lang="python">
# In CASA
# In CASA
# Concat and scale weights
# Concat and scale weights
os.system('rm -rf M100_Intcombo_0.193.ms')
os.system('rm -rf M100_combine_CO.ms')
concat(vis=['m100_12m_CO.ms','m100_7m_CO.ms'],
concat(vis=['m100_12m_CO.ms','m100_7m_CO.ms'],
       concatvis='M100_Intcombo_0.193.ms',
       concatvis='M100_combine_CO.ms')
      visweightscale=[1,0.193])
</source>
</source>
Now plot the concatenated weights to verify they are as expected.


<source lang="python">
<source lang="python">
# In CASA
# In CASA
os.system('rm -rf Intcombo_0.193_WT.png')
os.system('rm -rf combine_CO_WT.png')
plotms(vis='M100_Intcombo_0.193.ms',yaxis='wt',xaxis='uvdist',spw='0~2:200',
plotms(vis='M100_combine_CO.ms',yaxis='wt',xaxis='uvdist',spw='0~2:200',
       coloraxis='spw',plotfile='Intcombo_0.193_WT.png')
       coloraxis='spw',plotfile='combine_CO_WT.png')
</source>
</source>


<figure id="M100_Intcombo_0.193_vel.png">
Here, we create more instructive plots of the combined data to check that things are in order. (''Let each plot finish before cutting and pasting next plot. If plotms gui disappears, exit CASA and restart.'')
[[File:M100_Intcombo_0.193_vel.png|200px|thumb|right|<caption> Amplitude as a function of velocity.</caption>]]
 
<figure id="M100_combine_vel.png">
[[File:M100_combine_vel.png|200px|thumb|right|<caption> Amplitude as a function of velocity.</caption>]]
</figure>
</figure>


Some additional useful plots of the combined data (''Let each plot finish before cutting and pasting next plot. If plotms gui disappears, exit CASA and restart''):
To plot amplitude as a function of uv-distance, noting that the 7m data is noisier than the 12m data:
 
amplitude as a function of uv-distance


<source lang="python">
<source lang="python">
# In CASA
# In CASA
os.system('rm -rf M100_Intcombo_0.193 _uvdist.png')
os.system('rm -rf M100_combine_uvdist.png')
plotms(vis='M100_Intcombo_0.193.ms',yaxis='amp',xaxis='uvdist',spw='',
plotms(vis='M100_combine_CO.ms',yaxis='amp',xaxis='uvdist',spw='', avgscan=True,
       avgchannel='5000',
       avgchannel='5000', coloraxis='spw',plotfile='M100_combine_uvdist.png')  
      coloraxis='spw',plotfile='M100_Intcombo_0.193_uvdist.png')  
</source>
</source>


The CO line as a function of velocity (note this plot takes a while).
A fairer comparison of these data is achieved by isolating the brightest line channels in individual 12m and 7m data sets (i.e., not the concatenated data sets) and comparing only those channels in amplitude vs. uv-distance. Here the agreement is better, as it is less dominated by the scatter among the several 7m executions.
 
To plot the CO line as a function of velocity (this plot takes a while):


<source lang="python">
<source lang="python">
# In CASA
# In CASA
os.system('rm -rf M100_Intcombo_0.193_vel.png')
os.system('rm -rf M100_combine_vel.png')
plotms(vis='M100_Intcombo_0.193.ms',yaxis='amp',xaxis='velocity',spw='',
plotms(vis='M100_combine_CO.ms',yaxis='amp',xaxis='velocity',spw='', avgtime='1e8',avgscan=True,coloraxis='spw',avgchannel='5',
      avgtime='1e8',avgscan=True,coloraxis='spw',avgchannel='5',
       transform=True,freqframe='LSRK',restfreq='115.271201800GHz', plotfile='M100_combine_vel.png')
       transform=True,freqframe='LSRK',restfreq='115.271201800GHz',
      plotfile='M100_Intcombo_0.193_vel.png')
</source>
</source>


To see each spectral window independently, run the command again but remove plotfile, and add iteraxis='spw'.
To see each spectral window independently in plotms, run the command again but remove the call to "plotfile" and add " iteraxis='spw' ".
 
== Image Using An Automasking Technique ==
 
The commands in this section perform an iterative automasking procedure down
to a user specified threshold=stop*rms where stop is typically 2-3 using the imagemode='mosaic' mode of clean.  This mode automatically calculates the correct convolution of the primary beam response of the mosaic when different antenna dish diameters are present. '''NOTE:''' even if these data had only been comprised of a single pointing of 7m and 12m-array data, the imagemode='mosaic' mode would be needed to correctly image data with different antenna sizes.


== Image Using Automasking Technique ==
The procedure outlined below takes some care to ensure that the generated masks (i) only have values of 0 or 1; (ii) are themselves masked at the minpb level. It also removes very small masked regions that are consistent with noise bumps using a function in scipy. A typical setting is to remove mask regions that are 1/2 the beam area in pixels. This is one technique under exploration for future pipeline use. 


The commands in this section attempt to do an iterative automasking procedure down
The commands have been split into multiple sections to aid cut and paste. Wait until the current one is done before starting next section. '''If you stop CASA and restart you will need to cut and paste again from the Define Parameters section on down'''.
to a user specified threshold=stop*rms where stop is typically 2-3. It takes
some care to ensure that the generated masks (i) only have values of
0 or 1; (ii) are themselves masked at the minpb level. It also
removes very small masked regions that are consistent with noise
bumps using a function in scipy. A typical setting is to remove mask
regions that are 1/2 the beam area in pixels.


The commands have been split into multiple sections to aid cut and paste -- do them one at a time. '''If you stop CASA and restart you will need to cut and paste again from the Define Parameters section on down'''.
For the long series of commands below it is important to include the '''beginning cpaste''' and '''ending --''' in your cut and paste.


=== Define Parameters ===
=== Define Parameters ===
Note that the parameters used here are by design the same as those used to make the stand-alone 7m-array and 12m-array images.
<source lang="python">
<source lang="python">
# In CASA
# In CASA
cpaste


### Initialize  
### Initialize  
Line 196: Line 233:


### Define clean parameters
### Define clean parameters
vis='M100_Intcombo_0.193.ms'
vis='M100_combine_CO.ms'
prename='M100_Intcombo_0.193_cube'
prename='M100_combine_cube'
myimage=prename+'.image'
myimage=prename+'.image'
myflux=prename+'.flux'
myflux=prename+'.flux'
Line 212: Line 249:
nchan=70
nchan=70
robust=0.5
robust=0.5
phasecenter='J2000 12h22m54.9 +15d49m10'
phasecenter='J2000 12h22m54.9 +15d49m15'
scales=[0]
scales=[0]
smallscalebias=0.6
smallscalebias=0.6


### Setup stopping criteria with multiplier for rms.
### Setup stopping criteria with multiplier for rms.
stop=3.  
stop=3.  


### Minimum size multiplier for beam area for removing very small mask regions.  
### Minimum size multiplier for beam area for removing very small mask regions.  
pixelmin=0.5 


pixelmin=0.5 
--
</source>
</source>


=== Make Initial Dirty Image and find rms noise ===
=== Make Initial Dirty Image and Determine Synthesized Beam area===
 
The dirty image is used to determine the initial peak flux density in the cube and the beam area is used to define the minimum size of masked regions in order to exclude noise bumps from the overall mask.


<source lang="python">
<source lang="python">
# In CASA
# In CASA
cpaste
### Make initial dirty image
### Make initial dirty image
os.system('rm -rf '+prename+'.* ' +prename+'_*')
os.system('rm -rf '+prename+'.* ' +prename+'_*')
Line 239: Line 279:
       mask='',
       mask='',
       niter=0,interactive=F)
       niter=0,interactive=F)
# Determine the beam area in pixels for later removal of very small mask regions
major=imhead(imagename=myimage,mode='get',hdkey='beammajor')['value']
minor=imhead(imagename=myimage,mode='get',hdkey='beamminor')['value']
pixelsize=float(cell.split('arcsec')[0])
beamarea=(major*minor*pi/(4*log(2)))/(pixelsize**2)
print 'beamarea in pixels =', beamarea
--
</source>
</source>


=== Find properties of the dirty image ===
=== Find properties of the dirty image ===


For the long command below it is important to include the '''cpaste''' and '''--''' in your cut and paste.
For the long series of commands below it is important to include the beginning '''cpaste''' and ending '''--''' in your cut and paste.


<source lang="python">
<source lang="python">
Line 252: Line 301:
bigstat=imstat(imagename=myimage)
bigstat=imstat(imagename=myimage)
peak= bigstat['max'][0]
peak= bigstat['max'][0]
print 'peak in cube = '+str(peak)
print 'peak (Jy/beam) in cube = '+str(peak)
### Sets threshold of first loop, try 2-4. Subsequent loops are set thresh/2
### Sets threshold of first loop, try 2-4. Subsequent loops are set thresh/2.
thresh = peak /4.
thresh = peak / 4.


### If True: find the rms in two line-free channels; If False:  Set rms by hand in else statement.
### If True: find the rms in two line-free channels; If False:  Set rms by hand in else statement.
Line 264: Line 313:
     rms=0.5*(rms1+rms2)         
     rms=0.5*(rms1+rms2)         
else:
else:
     rms=0.013
     rms=0.011




print 'rms in a channel = '+str(rms)
print 'rms (Jy/beam) in a channel = '+str(rms)
--
--
</source>
=== Define minimum size of masked region  ===
<source lang="python">
# In CASA
# Deterimine the beam area in pixels for later removal of very small mask regions
major=imhead(imagename=myimage,mode='get',hdkey='beammajor')['value']
minor=imhead(imagename=myimage,mode='get',hdkey='beamminor')['value']
pixelsize=float(cell.split('arcsec')[0])
beamarea=(major*minor*pi/(4*log(2)))/(pixelsize**2)
print 'beamarea in pixels =', beamarea
</source>
</source>


=== Automasking Loop ===
=== Automasking Loop ===


For the long command below it is important to include the '''cpaste''' and '''--''' in your cut and paste.
On a reasonably fast computer the following will take a couple of hours for this spectral mosaic...  


<source lang="python">
<source lang="python">
Line 353: Line 390:
--
--
</source>
</source>
=== Notes on the Automasking procedure ===
This script is meant to be a possible stepping stone to optimal automasking -- it is by no means perfect and is certainly slower than optimal but feel free to try it with other datasets. Some notes below:
In addition to the final prename.image (prename.flux etc) this script produces and keeps each iteration of the various mask files which will allow you to explore how the masking proceeded as the threshold for masking and cleaning was lowered. The ones denoted "prename. fullmask*.pb.min" are the ones used in the clean steps themselves. At the end of the process the final "prename. fullmask*.pb.min" will also be stored in the prename.mask. Once you've verified you are happy with the masking, you may want to remove the prename.threshmask* and prename.fullmask* files, as they can be large for large cubes.
Additionally, before running the final loop with thresh=stop*rms the script copies the .image from the preceding clean to prename.image'n' where 'n' equals the loop number of the preceding step. So in this M100 example you will see a M100_combine_cube.image and a M100_combine_cube.image2 where .image is the final image and .image2 is the next to last image. This is done for convenience in the case that thresh=stop*rms is too deep such that clean diverges, you will still be left with the clean image from the preceding loop that you can further investigate to understand why clean diverged. If all goes well with the final loop, the prename.image'n' can also be deleted. Divergence at thresh=stop*rms is often a sign that the image is "dynamic range limited" in other words the rms in channels with bright emission is significantly worse than for a line-free channel.
== Image Analysis for the 7m+12m Data ==
=== Moment Maps for 7m+12m CO (1-0) Cube ===
Start by examining the final image cube. Determine the start and stopping channels for the line emission -- this will be used in the "chans" parameter of immoments.
<source lang="python">
# In CASA
viewer('M100_combine_cube.image')
</source>
Next determine the rms noise per channel and use that to exclude pixels from the moment images. All images are shown in the gallery at the end of the following section.
<source lang="python">
# In CASA
myimage='M100_combine_cube.image'
chanstat=imstat(imagename=myimage,chans='4')
rms1= chanstat['rms'][0]
chanstat=imstat(imagename=myimage,chans='66')
rms2= chanstat['rms'][0]
rms=0.5*(rms1+rms2)
print 'rms in a channel = '+str(rms)
</source>
Next make the moment maps. For the integrated intensity: moment 0, a 2 sigma cut often considerably improves the appearance of the image with little effect on the integrated intensity as long as emission free channels are excluded. For higher order moments it is necessary to exclude all low S/N data. Typically 5-6 sigma for the higher moments works well. We also apply further masking based on the .flux image because the edges of the combined mosaic are especially noisy because the 7m mosaic is somewhat larger than the 12m mosaic as described above (see Figures 1 & 2).
<source lang="python">
# In CASA
cpaste
os.system('rm -rf M100_combine_cube.image.mom0')
immoments(imagename = 'M100_combine_cube.image',
        moments = [0],
        axis = 'spectral',chans = '9~61',
        mask='M100_combine_cube.flux>0.3',,
        includepix = [rms*2,100.],
        outfile = 'M100_combine_cube.image.mom0')
os.system('rm -rf M100_combine_cube.image.mom1')
immoments(imagename = 'M100_combine_cube.image',
        moments = [1],
        axis = 'spectral',chans = '9~61',
        mask='M100_combine_cube.flux>0.3',
        includepix = [rms*5.5,100.],
        outfile = 'M100_combine_cube.image.mom1')
--
</source>
Now we can make some figures showing the moment maps (*note that this creates different looking files for me than the ones I have included here, which were made in the viewer -- is this true for others?*):
<source lang="python">
# In CASA
cpaste
os.system('rm -rf M100_combine_cube.image.mom*.png')
imview (raster=[{'file': 'M100_combine_cube.image.mom0',
                'range': [-0.3,25.],'scaling': -1.3,'colorwedge': T}],
        zoom={'blc': [190,150],'trc': [650,610]},
        out='M100_combine_cube.image.mom0.png')
imview (raster=[{'file': 'M100_combine_cube.image.mom1',
                'range': [1440,1695],'colorwedge': T}],
        zoom={'blc': [190,150],'trc': [650,610]},
        out='M100_combine_cube.image.mom1.png')
--
</source>
If you plan to use your moment 0 image to make measurements, it needs to be primary beam corrected first. First we need to subimage the .flux cube to extract a single plane that can be used to primary beam correct the moment 0 image.
<source lang="python">
# In CASA
os.system('rm -rf M100_combine_cube.flux.1ch')
imsubimage(imagename='M100_combine_cube.flux',
          outfile='M100_combine_cube.flux.1ch',
          chans='35')
</source>
Then primary beam correct the moment 0 image. This is the version that would be used for measurements, though the uncorrected one can be useful for figures. The difference is clear in the images seen below in the following section.
<source lang="python">
# In CASA
os.system('rm -rf M100_combine_cube.image.mom0.pbcor')
immath(imagename=['M100_combine_cube.image.mom0', \
                      'M100_combine_cube.flux.1ch'],
        expr='IM0/IM1',
        outfile='M100_combine_cube.image.mom0.pbcor')
</source>
Have a look at the difference the primary beam correction makes.
<source lang="python">
# In CASA
imview (raster=[{'file': 'M100_combine_cube.image.mom0',
                'range': [-0.3,25.],'scaling': -1.3},
                {'file': 'M100_combine_cube.image.mom0.pbcor',
                'range': [-0.3,25.],'scaling': -1.3}],
        zoom={'blc': [190,150],'trc': [650,610]})
</source>
With the viewer open, you can flip back and forth between the images to compare them.  Next, make a figure.
<source lang="python">
# In CASA
os.system('rm -rf M100_combine_cube.image.mom0.pbcor.png')
imview (raster=[{'file': 'M100_combine_cube.image.mom0.pbcor',
                'range': [-0.3,25.],'scaling': -1.3,'colorwedge': T}],
        zoom={'blc': [190,150],'trc': [650,610]},
        out='M100_combine_cube.image.mom0.pbcor.png')
</source>
=== Comparison with 7m, 12m Moment Maps ===
Below the moment maps from the 7m-only and the 12m-only data are shown for comparison. The moment maps were made using clean masks drawn by hand for comparison to the automasking technique; the two appear to be qualitatively similar. The range and scaling for the 12m-only figures are the same as that used for the 7m+12m figures for ease of comparison.
As expected, the 7m+12m image shows considerably more extended emission than the 12m-only data and finer detail than the 7m-only data. For comparison, the 7m+12m synthesized beam is 3.80"x2.50", while the 12m-only beam is 3.46"x2.37" and the 7m-only beam is 12.71"x10.09".
<gallery widths=300px heights=300px>
File:12m.png | Moment 0 for 12m data alone (no primary beam correction).
File:7m.png | Moment 0 for 7m data alone (no primary beam correction).
File:combined.png | Moment 0 for 12m+7m data (no primary beam correction).
File:combine_pbcor.png | Moment 0 for 12m+7m data with primary beam correction.
</gallery>
<gallery widths=300px heights=300px>
File:12m_mom1.png | Moment 1 for 12m data alone.
File:7m_mom1.png | Moment 1 for 7m data alone.
File:combine_mom1.png | Moment 1 for 12m+7m data.
</gallery>
=== Convert 7m+12m Images to Fits Format ===
<source lang="python">
# In CASA
cpaste
os.system('rm -rf *.fits')
exportfits(imagename='M100_combine_cube.image',fitsimage='M100_combine_cube.image.fits')
exportfits(imagename='M100_combine_cube.flux',fitsimage='M100_combine_cube.flux.fits')
exportfits(imagename='M100_combine_cube.image.mom0',fitsimage='M100_combine_cube.image.mom0.fits')
exportfits(imagename='M100_combine_cube.image.mom0.pbcor',fitsimage='M100_combine_cube.image.mom0.pbcor.fits')
exportfits(imagename='M100_combine_cube.image.mom1',fitsimage='M100_combine_cube.image.mom1.fits')
--
</source>
= Feathering the Total Power and 7m+12m Interferometric Images=
== Image the Total Power Data ==
Run listobs on the total power data to see what spw contains the CO
<source lang="python">
In CASA
os.system('rm -rf concat_m100.ms.listobs')
listobs(vis='concat_m100.ms',listfile='concat_m100.ms.listobs')
</source>
Image the TP data
<source lang="python">
In CASA
os.system('rm -rf TP_CO_cube')
sdimaging(infile='concat_m100.ms',
          field=0,spw=15,
          specunit='km/s',restfreq='115.271204GHz',
          dochannelmap=True,
          nchan=70,start=1400,step=5,
          gridfunction='gjinc',imsize=[50,50],
          cell=['10arcsec','10arcsec'],
          outfile='TP_CO_cube')
</source>
=== Determine the TP Restoring Beam and Convert to Jy/beam ===
Next we need to determine the restoring beam size. This will depend
on 3 factors
(1) The expected FWHP for the 12m TP dishes which have a -12dB taper
and a Gaussian shape. This is 1.17 lambda / 12m (radians)
(2) Any broadening of the beam due to less than ideal sampling. For
an antenna with -12dB taper, Nyquist = FWHM/2.4. To have less than
1% broadening the sampling should be 2 x Nyquist.
(3) The convolution of the gridding kernel with the combination of
(1) and (2)
<figure id="TP_sampling.png">
[[File:TP_sampling.png|300px|thumb|right|<caption> TP raster pointings.</caption>]]
</figure>
We have chosen the "gjinc" function in sdimaging because it produces the lease broadening of the effective beam. This is important because any broadening of the effective beam is equivalent to having used a smaller antenna.
For more information on these topics, see Mangum et al. 2007
(http://adsabs.harvard.edu/abs/2007A%26A...474..679M)
Two functions in the analysis utilities suite can be used to calculate the sampling of the TP data in the X and Y directions and then the final restoring beam, respectively.
<source lang="python">
In CASA
xSampling,ySampling=au.getTPSampling('concat_m100.ms',
      showplot=True,plotfile='TP_sampling.png')
</source>
xSampling = 10.3766 arcsec
ySampling = 15.0002 arcsec
The '''frequency required for au.gjincBeam is the observed sky frequency near the center of the line''' (not the rest
frequency). The pixelsize should be the same as that used for the cell in sdimaging. The sampling parameters were determined by au.getTPSampling
<source lang="python">
In CASA
RestorBeam=au.gjincBeam(frequency=114.66,pixelsize=10,xSamplingArcsec=xSampling,ySamplingArcsec=ySampling)
</source>
The output to the terminal will be:
Theoretical primary beam FWHP = 52.5822 arcsec
Expected effective restoring beam along scan = 54.4937 arcsec
Expected effective restoring beam between rows = 54.9774 arcsec
Geometric mean = 54.735 arcsec
Next set the restoring beam to the derived value.
<source lang="python">
In CASA
ia.open('TP_CO_cube')
ia.setrestoringbeam(major=str(RestorBeam)+'arcsec',
                    minor=str(RestorBeam)+'arcsec',
                    pa='0deg')
ia.done()
</source>
Convert the image from K to Jy assuming Jy/K = 55.0
Note currently sdimaging reports that the image it makes is
in Jy/beam. This is a bug.
<source lang="python">
In CASA
os.system('rm -rf TP_CO_cube_Jy')
immath(imagename='TP_CO_cube',
      expr='IM0*55.0',
      outfile='TP_CO_cube_Jy')
</source>
== Prepare Images for Feathering ==
Regrid TP image to match the shape of the 7m+12m image.
<source lang="python">
In CASA
os.system('rm -rf TP_CO_cube_Jy.regrid')
imregrid(imagename='TP_CO_cube_Jy',
        template='M100_Intcombo_0.193_cube.image',
        shape=[800,800,1,70],
        axes=[0,1],output='TP_CO_cube_Jy.regrid')
</source>
Subimage both images to a matching size, excluding regions masked by the clean pbmin=0.2 and noisy edge pixels in the TP image. The Viewer can be used to determine a good joint region.
<source lang="python">
In CASA
os.system('rm -rf M100_Intcombo_0.193_cube.image.subim')
imsubimage(imagename='M100_Intcombo_0.193_cube.image',
          outfile='M100_Intcombo_0.193_cube.image.subim',
          box='230,184,604,598')
os.system('rm -rf TP_CO_cube_Jy.regrid.subim')
imsubimage(imagename='TP_CO_cube_Jy.regrid',
          outfile='TP_CO_cube_Jy.regrid.subim',
          box='230,184,604,598')
</source>
Creat subimaged version the mosaic response
<source lang="python">
In CASA
os.system('rm -rf M100_Intcombo_0.193_cube.flux.subim')
imsubimage(imagename='M100_Intcombo_0.193_cube.flux',
          outfile='M100_Intcombo_0.193_cube.flux.subim',
          box='230,184,604,598')
</source>
Multiply the TP image by the mosaic beam response of the 7m+12m image
<source lang="python">
In CASA
os.system('rm -rf TP_CO_cube_Jy.regrid.subim.depb')
immath(imagename=['TP_CO_cube_Jy.regrid.subim',
                  'M100_Intcombo_0.193_cube.flux.subim'],
      expr='IM0*IM1',
      outfile='TP_CO_cube_Jy.regrid.subim.depb')
</source>
== Feather TP Cube with 7m+12m Cube ==
Feather with default parameters
<source lang="python">
In CASA
os.system('rm -rf M100_Feather_CO')
feather(imagename='M100_Feather_CO',
        highres='M100_Intcombo_0.193_cube.image.subim',
        lowres='TP_CO_cube_Jy.regrid.subim.depb')
</source>
== Make Moment Maps of TP and Feathered Images ==
We will use the same technique as the 7m+12m image analysis above to make moment maps.
First, make moment maps for the TP image.
<source lang="python">
In CASA
myimage='TP_CO_cube_Jy.regrid.subim'
chanstat=imstat(imagename=myimage,chans='4')
rms1= chanstat['rms'][0]
chanstat=imstat(imagename=myimage,chans='66')
rms2= chanstat['rms'][0]
rms=0.5*(rms1+rms2) 
os.system('rm -rf TP_CO_cube_Jy.regrid.subim.mom0')
immoments(imagename = 'TP_CO_cube_Jy.regrid.subim',
        moments = [0],
        axis = 'spectral',
        chans = '10~61',
        includepix = [rms*2.,50],
        outfile = 'TP_CO_cube_Jy.regrid.subim.mom0')
 
os.system('rm -rf TP_CO_cube_Jy.regrid.subim.mom1')
immoments(imagename = 'TP_CO_cube_Jy.regrid.subim',
        moments = [1],
        axis = 'spectral',
        chans = '10~61',
        includepix = [rms*5.5,50],
        outfile = 'TP_CO_cube_Jy.regrid.subim.mom1')
</source>
<source lang="python">
In CASA
os.system('rm -rf TP_CO_cube_Jy.regrid.subim .mom*.png')
imview (raster=[{'file': 'TP_CO_cube_Jy.regrid.subim.mom0',
                'range': [-0.3,900.],'scaling': -1.0,'colorwedge': T}],
        out='TP_CO_cube_Jy.regrid.subim.mom0.png')
imview (raster=[{'file': 'TP_CO_cube_Jy.regrid.subim.mom1',
                'range': [1455,1695],'colorwedge': T}],
        out='TP_CO_cube_Jy.regrid.subim.mom1.png')
</source>
Make moment maps for the feathered image.
<source lang="python">
In CASA
myimage='M100_Feather_CO'
chanstat=imstat(imagename=myimage,chans='4')
rms1= chanstat['rms'][0]
chanstat=imstat(imagename=myimage,chans='66')
rms2= chanstat['rms'][0]
rms=0.5*(rms1+rms2) 
os.system('rm -rf M100_Feather_CO.mom0')
immoments(imagename = 'M100_Feather_CO',
        moments = [0],
        axis = 'spectral',
        chans = '10~61',
        includepix = [rms*2.,50],
        outfile = 'M100_Feather_CO.mom0')
 
os.system('rm -rf M100_Feather_CO.mom1')
immoments(imagename = 'M100_Feather_CO',
        moments = [1],
        axis = 'spectral',
        chans = '10~61',
        includepix = [rms*5.5,50],
        outfile = 'M100_Feather_CO.mom1')
</source>
<source lang="python">
In CASA
os.system('rm -rf M100_Feather_CO.mom*.png')
imview (raster=[{'file': 'M100_Feather_CO.mom0',
                'range': [-0.3,25.],'scaling': -1.0,'colorwedge': T}],
        out='M100_Feather_CO.mom0.png')
imview (raster=[{'file': 'M100_Feather_CO.mom1',
                'range': [1455,1695],'colorwedge': T}],
        out='M100_Feather_CO.mom1.png')
</source>
=== Primary Beam Correct the Moment 0 Image ===
Apply the primary beam response to the feathered image
<source lang="python">
In CASA
os.system('rm -rf M100_Intcombo_0.193_cube.flux.1ch.subimage')
imsubimage(imagename='M100_Intcombo_0.193_cube.flux',
          outfile='M100_Intcombo_0.193_cube.flux.1ch.subimage',
          box='230,184,604,598',         
          chans='35')
</source>
<source lang="python">
In CASA
os.system('rm -rf M100_Feather_CO.mom0.pbcor')
immath(imagename=['M100_Feather_CO.mom0', \
                      'M100_Intcombo_0.193_cube.flux.1ch.subimage'],
        expr='IM0/IM1',
        outfile='M100_Feather_CO.mom0.pbcor')
</source>
Create a figure of primary beam corrected moment 0.
<source lang="python">
In CASA
os.system('rm -rf M100_Feather_CO.mom0.pbcor.png')
imview (raster=[{'file': 'M100_Feather_CO.mom0.pbcor',
                'range': [-0.3,25.],'scaling': -1.0,'colorwedge': T}],
        out='M100_Feather_CO.mom0.pbcor.png')
</source>
=== Compare the Different Images ===
Now lets compare all the different images:
<gallery perrow=3 widths=300px heights=300px>
File:12m_pbcor.png | Primary beam corrected moment 0 for the 12m data.
File:7m_pbcor.png | Primary beam corrected moment 0 for the 7m data.
File:TP_CO_cube_Jy.regrid.subim.mom0.png | Moment 0 for the TP data (UPDATE).
File:combine_pbcor.png | Primary beam corrected moment 0 for 7m+12m data.
File:M100_Feather_CO.mom0.pbcor.png | Primary beam corrected moment 0 for TP+7m+12m data (UPDATE).
</gallery>
<gallery perrow=3 widths=300px heights=300px>
File:12m_mom1.png | Moment 1 for 12m data.
File:7m_mom1.png | Moment 1 for 7m data.
File:TP_CO_cube_Jy.regrid.subim.mom1.png | Moment 1 for the TP data (UPDATE).
File:combine_mom1.png | Moment 1 for 7m+12m data.
File:M100_Feather_CO.mom1.png | Moment 1 for TP+7m+12m data (UPDATE).
</gallery>
{{Checked 4.1.0}}

Latest revision as of 23:30, 19 May 2015

This page is currently under construction.

DO NOT USE IT.

To navigate the CASAguides pages, visit [http://casaguides.nrao.edu/ casaguides.nrao.edu ]

Overview

This guide describes how to combine the 7m and 12m interferometric data and then how to feather the resulting image with the total power TP image. All of the data for this SV project can be found at https://almascience.nrao.edu/alma-data/science-verification. The guide has been written for data reduced in CASA 4.3.0 or later and assumes that all calibration tables (Tsys and gain tables) have been applied to the visibility weights using calwt=True. If either of these is not the case for your data, do not follow this guide.

In order to run this guide you will need to:

  • Either download the fully calibrated 7m data (i.e., M100_Band3_7m_CalibratedData.tgz) or download the uncalibrated 7m data and the relevant, standard calibration scripts available (here)
  • Either download the fully calibrated 12m data (i.e. M100_Band3_12m_CalibratedData.tgz) or download the uncalibrated 12m data and the relevant, standard calibration scripts available (here). Note that this is a new calibration of the same data that were released previously, and so the data reduction path has been updated to current best practices and starts from the raw data files called ASDMs (ALMA Science Data Model). Do not use the previously released uncalibrated or calibrated data.
  • Either run the M100_Band3_SingleDish_4.3 guide to calibrate and image the Total Power data or download the final image (i.e. M100_TP_Image.tgz)

Confirm your version of CASA

This guide has been written for CASA release 4.3.0. Please confirm your version before proceeding.

# In CASA
version = casadef.casa_version
print "You are using " + version
if (version < '4.3.0'):
    print "YOUR VERSION OF CASA IS TOO OLD FOR THIS GUIDE."
    print "PLEASE UPDATE IT BEFORE PROCEEDING."
else:
    print "Your version of CASA is appropriate for this guide."

Combine and Image the 7m+12m Interferometric Data

Split off CO spectral windows (SPWs)

# In CASA
os.system('rm -rf m100_*m.ms.listobs')
listobs('M100_Band3_12m_CalibratedData.ms',listfile='m100_12m.ms.listobs')
listobs('M100_Band3_7m_CalibratedData.ms',listfile='m100_7m.ms.listobs')

Running the task "listobs" provides the setups used in the observations at a glance. Below are the first target scans of the 12m and 7m observations and the spectral window tables as generated by listobs. The six 7m data sets were taken with two slightly different correlator setups (one with four SPWs and the other with two SPWs), so the concatenated data set has six total SPWs.

12m data:

ObservationID = 0         ArrayID = 0
  Date        Timerange (UTC)          Scan  FldId FieldName             nRows     SpwIds   Average Interval(s)    ScanIntent
  10-Aug-2011/19:38:05.8 - 19:50:22.8    11      1 M100                      1500  [0,1,2,3]  [6.05, 6.05, 6.05, 6.05] [CALIBRATE_WVR#ON_SOURCE,OBSERVE_TARGET#ON_SOURCE]

Spectral Windows:  (4 unique spectral windows and 1 unique polarization setups)
  SpwID  Name   #Chans   Frame   Ch0(MHz)  ChanWid(kHz)  TotBW(kHz) CtrFreq(MHz) BBC Num  Corrs
  0              3840   TOPO  113726.419       488.281   1875000.0 114663.6750        1  XX  YY
  1              3840   TOPO  111851.419       488.281   1875000.0 112788.6750        2  XX  YY
  2              3840   TOPO  103663.431      -488.281   1875000.0 102726.1750        3  XX  YY
  3              3840   TOPO  101850.931      -488.281   1875000.0 100913.6750        4  XX  YY

7m data:

ObservationID = 0         ArrayID = 0
  Date        Timerange (UTC)          Scan  FldId FieldName             nRows     SpwIds   Average Interval(s)    ScanIntent
  17-Mar-2013/04:44:04.3 - 04:50:43.7    11      1 M100                       261  [0,1,2,3]  [10.1, 10.1, 10.1, 10.1] [OBSERVE_TARGET#ON_SOURCE]

Spectral Windows:  (6 unique spectral windows and 1 unique polarization setups)
  SpwID  Name                           #Chans   Frame   Ch0(MHz)  ChanWid(kHz)  TotBW(kHz) CtrFreq(MHz) BBC Num  Corrs
  0      ALMA_RB_03#BB_1#SW-01#FULL_RES   4080   TOPO  101945.850      -488.281   1992187.5 100950.0000        1  XX  YY
  1      ALMA_RB_03#BB_2#SW-01#FULL_RES   4080   TOPO  103761.000      -488.281   1992187.5 102765.1500        2  XX  YY
  2      ALMA_RB_03#BB_3#SW-01#FULL_RES   4080   TOPO  111811.300       488.281   1992187.5 112807.1500        3  XX  YY
  3      ALMA_RB_03#BB_4#SW-01#FULL_RES   4080   TOPO  113686.300       488.281   1992187.5 114682.1500        4  XX  YY
  4      ALMA_RB_03#BB_1#SW-01#FULL_RES   4080   TOPO  111798.250       488.281   1992187.5 112794.1000        1  XX  YY
  5      ALMA_RB_03#BB_2#SW-01#FULL_RES   4080   TOPO  113673.250       488.281   1992187.5 114669.1000        2  XX  YY

<figure id="12m_mosaic.png">

FOV of 12m mosaic.

</figure>

<figure id="7m_mosaic.png">

FOV of 7m mosaic.

</figure>

Examination of the listobs files shows that the CO is in SPW='0' for the 12m data and in SPW='3,5' for the 7m data. There are two SPWs containing CO in the 7m data due to the slightly differing correlator setups.

Also note that the integration time per visibility (average interval parameter in listobs) is different: 6.05s for the 12m data and 10.1s for the 7m. This will be important to know later when we check the visibility weights.

Next we split out the CO spectral windows.

# In CASA
os.system('rm -rf m100_12m_CO.ms')
split(vis='M100_Band3_12m_CalibratedData.ms',
      outputvis='m100_12m_CO.ms',spw='0',field='M100',
      datacolumn='data',keepflags=False)
os.system('rm -rf m100_7m_CO.ms')
split(vis='M100_Band3_7m_CalibratedData.ms',
      outputvis='m100_7m_CO.ms',spw='3,5',field='M100',
      datacolumn='data',keepflags=False)

Also of interest is that the 12m data has 47 fields and the 7m has 23 fields (not shown in the excerpts above). The difference in number of pointings is because the 7m antennas have a FWHP (full width half power) primary beam diameter that is 12/7 times larger than the 12m antennas. One easy way to see how the mosaics compare is to install the AnalysisUtils package (see Analysis_Utilities). Then with AnalysisUtils you can make the following plots (look at the listobs to obtain the sourceid):

# In CASA
os.system('rm -rf *m_mosaic.png')
au.plotmosaic('m100_12m_CO.ms',sourceid='0',figfile='12m_mosaic.png')
au.plotmosaic('m100_7m_CO.ms',sourceid='0',figfile='7m_mosaic.png')

We see that the mosaics cover a common area but that the 7m mosaic is a bit larger. This means that the outer edges of the combined mosaic will be noisier than expected if they overlapped perfectly; this is just something to keep in mind. If you had the case where the mosaic coverages are dramatically different, it would be best to exclude the completely non-overlapping fields from the combination.

NOTE: At this stage one would typically do continuum subtraction (if there is any). However we already know from the individual data reductions that the 3mm continuum emission is quite weak and does not significantly contribute to a 5km/s channel, so we will forgo the the continuum subtraction step. Examples of how to do this if you are so inclined are located in various other ALMA CASAguides.

Checking the weights and concatenating the data

<figure id="7m_WT.png">

12m weights.

</figure>

<figure id="12m_WT.png">

7m weights.

</figure>

When combining data with disparate properties it is very important that the relative weights of each visibility be in the correct proportion to the other data according to the radiometer equation. Formally, the visibility weights should be proportional to 1/sigma2 where sigma is the variance or rms noise of a given visibility.

Assuming that the 7m and 12m antennas have similar apperture and quantization efficiencies (a reasonable assumption since they were designed this way), the rms noise in a single channel for a single visibility is:

[math]\displaystyle{ \sigma_{ij}=\frac{2k}{A_{eff}} }[/math] [math]\displaystyle{ \sqrt{\frac{T_{sys,i} T_{sys,j}}{\Delta\nu_{ch} t_{ij}}}, }[/math]

where k is Boltzmann's constant, Aeff is the effective antenna area, Tsys,i is the system temperature for antenna i, Δνch is the channel width, and tij is the integration time per visibility.

CASA initially scales the weights by 2ΔνchΔtij, and after the Tsys table applycal step of the calibration process, it further scales the weights by 1/[(Tsys(i) * Tsys(j)] as long as calwt=True. In the subsequent gain calibration table applycal step of the calibration, the weights are further scaled by a factor of [(gain(i))2 * (gain(j))2]. The gains should change very little from antenna to antenna, so this scaling is effectively the average gain4 (again, as long as calwt=True). In the calibration scripts for all executions of the 12m and 7m data, found (here), both applycal steps set calwt=True. To verify, we plot the weights of the 7m and 12m data and measure their ratio to be, on average, 7m/12m ~ 0.055/0.3 ~ 0.18. Note that in the plots the points are colored by SPW, so there is only one 12m CO SPW but there are two 7m CO SPWs, and that no averaging can be turned on when plotting the weights.

# In CASA
os.system('rm -rf 7m_WT.png 12m_WT.png')
plotms(vis='m100_12m_CO.ms',yaxis='wt',xaxis='uvdist',spw='0:200',
       coloraxis='spw',plotfile='12m_WT.png')
#
plotms(vis='m100_7m_CO.ms',yaxis='wt',xaxis='uvdist',spw='0~1:200',
       coloraxis='spw',plotfile='7m_WT.png')

<figure id="combine_CO_WT.png">

7m and 12m weights after concatenation.

</figure>

The two key things that are different between the 7m and 12m-array data are that the effective dish areas are different by (7/12)2, and the integration times are different by sqrt(10.1/6.05). Since dish area is in the numerator of the radiometer equation and integration time per visibility is in the denominator, and assuming the weight of an individual visibility is proportional to 1/sigma2, the ratio of the weights should be (7./12.)4 x (10.1/6.05) = 0.19. This is very close to the value we measure for the ratio of the weights, particularly given that the 7m flux calibration relied on a source which changed substantially over the course of the six 7m-array observations.

Now concatenate the two data sets and plot the concatenated weights to verify that they are as expected.

# In CASA
# Concat and scale weights
os.system('rm -rf M100_combine_CO.ms')
concat(vis=['m100_12m_CO.ms','m100_7m_CO.ms'],
       concatvis='M100_combine_CO.ms')
# In CASA
os.system('rm -rf combine_CO_WT.png')
plotms(vis='M100_combine_CO.ms',yaxis='wt',xaxis='uvdist',spw='0~2:200',
       coloraxis='spw',plotfile='combine_CO_WT.png')

Here, we create more instructive plots of the combined data to check that things are in order. (Let each plot finish before cutting and pasting next plot. If plotms gui disappears, exit CASA and restart.)

<figure id="M100_combine_vel.png">

Amplitude as a function of velocity.

</figure>

To plot amplitude as a function of uv-distance, noting that the 7m data is noisier than the 12m data:

# In CASA
os.system('rm -rf M100_combine_uvdist.png')
plotms(vis='M100_combine_CO.ms',yaxis='amp',xaxis='uvdist',spw='', avgscan=True,
       avgchannel='5000', coloraxis='spw',plotfile='M100_combine_uvdist.png')

A fairer comparison of these data is achieved by isolating the brightest line channels in individual 12m and 7m data sets (i.e., not the concatenated data sets) and comparing only those channels in amplitude vs. uv-distance. Here the agreement is better, as it is less dominated by the scatter among the several 7m executions.

To plot the CO line as a function of velocity (this plot takes a while):

# In CASA
os.system('rm -rf M100_combine_vel.png')
plotms(vis='M100_combine_CO.ms',yaxis='amp',xaxis='velocity',spw='', avgtime='1e8',avgscan=True,coloraxis='spw',avgchannel='5',
       transform=True,freqframe='LSRK',restfreq='115.271201800GHz', plotfile='M100_combine_vel.png')

To see each spectral window independently in plotms, run the command again but remove the call to "plotfile" and add " iteraxis='spw' ".

Image Using An Automasking Technique

The commands in this section perform an iterative automasking procedure down to a user specified threshold=stop*rms where stop is typically 2-3 using the imagemode='mosaic' mode of clean. This mode automatically calculates the correct convolution of the primary beam response of the mosaic when different antenna dish diameters are present. NOTE: even if these data had only been comprised of a single pointing of 7m and 12m-array data, the imagemode='mosaic' mode would be needed to correctly image data with different antenna sizes.

The procedure outlined below takes some care to ensure that the generated masks (i) only have values of 0 or 1; (ii) are themselves masked at the minpb level. It also removes very small masked regions that are consistent with noise bumps using a function in scipy. A typical setting is to remove mask regions that are 1/2 the beam area in pixels. This is one technique under exploration for future pipeline use.

The commands have been split into multiple sections to aid cut and paste. Wait until the current one is done before starting next section. If you stop CASA and restart you will need to cut and paste again from the Define Parameters section on down.

For the long series of commands below it is important to include the beginning cpaste and ending -- in your cut and paste.

Define Parameters

Note that the parameters used here are by design the same as those used to make the stand-alone 7m-array and 12m-array images.

# In CASA
cpaste

### Initialize 
import scipy.ndimage 

### Define clean parameters
vis='M100_combine_CO.ms'
prename='M100_combine_cube'
myimage=prename+'.image'
myflux=prename+'.flux'
mymask=prename+'.mask'
myresidual=prename+'.residual'
imsize=800
cell='0.5arcsec'
minpb=0.2
restfreq='115.271201800GHz'
outframe='LSRK'
spw='0~2'
width='5km/s'
start='1400km/s'
nchan=70
robust=0.5
phasecenter='J2000 12h22m54.9 +15d49m15'
scales=[0]
smallscalebias=0.6

### Setup stopping criteria with multiplier for rms.
stop=3. 

### Minimum size multiplier for beam area for removing very small mask regions. 
pixelmin=0.5  

--

Make Initial Dirty Image and Determine Synthesized Beam area

The dirty image is used to determine the initial peak flux density in the cube and the beam area is used to define the minimum size of masked regions in order to exclude noise bumps from the overall mask.

# In CASA
cpaste
### Make initial dirty image
os.system('rm -rf '+prename+'.* ' +prename+'_*')
clean(vis=vis,imagename=prename,
      imagermode='mosaic',ftmachine='mosaic',minpb=minpb,
      imsize=imsize,cell=cell,spw=spw,
      weighting='briggs',robust=robust,phasecenter=phasecenter,
      mode='velocity',width=width,start=start,nchan=nchan,      
      restfreq=restfreq,outframe=outframe,veltype='radio',
      mask='',
      niter=0,interactive=F)

# Determine the beam area in pixels for later removal of very small mask regions
major=imhead(imagename=myimage,mode='get',hdkey='beammajor')['value']
minor=imhead(imagename=myimage,mode='get',hdkey='beamminor')['value']
pixelsize=float(cell.split('arcsec')[0])
beamarea=(major*minor*pi/(4*log(2)))/(pixelsize**2)
print 'beamarea in pixels =', beamarea

--

Find properties of the dirty image

For the long series of commands below it is important to include the beginning cpaste and ending -- in your cut and paste.

# In CASA
cpaste
### Find the peak in the dirty cube.
myimage=prename+'.image'
bigstat=imstat(imagename=myimage)
peak= bigstat['max'][0]
print 'peak (Jy/beam) in cube = '+str(peak)
### Sets threshold of first loop, try 2-4. Subsequent loops are set thresh/2.
thresh = peak / 4.

### If True: find the rms in two line-free channels; If False:  Set rms by hand in else statement.
if True:  
    chanstat=imstat(imagename=myimage,chans='4')
    rms1= chanstat['rms'][0]
    chanstat=imstat(imagename=myimage,chans='66')
    rms2= chanstat['rms'][0]
    rms=0.5*(rms1+rms2)        
else:
    rms=0.011


print 'rms (Jy/beam) in a channel = '+str(rms)
--

Automasking Loop

On a reasonably fast computer the following will take a couple of hours for this spectral mosaic...

# In CASA
cpaste
n=-1
while (thresh >= stop*rms):   
    n=n+1
    print 'clean threshold this loop is', thresh
    threshmask = prename+'_threshmask' +str(n)
    maskim = prename+'_fullmask' +str(n)
    immath(imagename = [myresidual],
           outfile = threshmask,
           expr = 'iif(IM0 > '+str(thresh) +',1.0,0.0)',
           mask=myflux+'>'+str(minpb))
    if (n==0):
        os.system('cp -r '+threshmask+' '+maskim+'.pb')
        print 'This is the first loop'
    else:
        makemask(mode='copy',inpimage=myimage,
                 inpmask=[threshmask,mymask],
                 output=maskim)
        imsubimage(imagename=maskim, mask=myflux+'>'+str(minpb),
                   outfile=maskim+'.pb')     
    print 'Combined mask ' +maskim+' generated.'

    # Remove small masks
    os.system('cp -r '+maskim+'.pb ' +maskim+'.pb.min')
    maskfile=maskim+'.pb.min'
    ia.open(maskfile)
    mask=ia.getchunk()           
    labeled,j=scipy.ndimage.label(mask)                     
    myhistogram = scipy.ndimage.measurements.histogram(labeled,0,j+1,j+1)
    object_slices = scipy.ndimage.find_objects(labeled)
    threshold=beamarea*pixelmin
    for i in range(j):
        if myhistogram[i+1]<threshold:
            mask[object_slices[i]] = 0


    ia.putchunk(mask)
    ia.done()
    print 'Small masks removed and ' +maskim +'.pb.min generated.'

    os.system('rm -rf '+mymask+'')
    clean(vis=vis,imagename=prename,
          imagermode='mosaic',ftmachine='mosaic',minpb=minpb,
          imsize=imsize,cell=cell,spw=spw,
          weighting='briggs',robust=robust,phasecenter=phasecenter,
          mode='velocity',width=width,start=start,nchan=nchan,      
          restfreq=restfreq,outframe=outframe,veltype='radio',
          mask = maskim+'.pb.min',
          multiscale=scales,smallscalebias=smallscalebias,
          interactive = F,
          niter = 10000,
          threshold = str(thresh) +'Jy/beam')


    if thresh==stop*rms: break
    thresh = thresh/2.
    # Run a final time with stop*rms if more than a little above
    # stop*rms. Also make a back-up of next to last image
    if (thresh < stop*rms and thresh*2.>1.05*stop*rms):
        thresh=stop*rms  
        os.system('cp -r '+myimage+' '+myimage+str(n))

--

Notes on the Automasking procedure

This script is meant to be a possible stepping stone to optimal automasking -- it is by no means perfect and is certainly slower than optimal but feel free to try it with other datasets. Some notes below:

In addition to the final prename.image (prename.flux etc) this script produces and keeps each iteration of the various mask files which will allow you to explore how the masking proceeded as the threshold for masking and cleaning was lowered. The ones denoted "prename. fullmask*.pb.min" are the ones used in the clean steps themselves. At the end of the process the final "prename. fullmask*.pb.min" will also be stored in the prename.mask. Once you've verified you are happy with the masking, you may want to remove the prename.threshmask* and prename.fullmask* files, as they can be large for large cubes.

Additionally, before running the final loop with thresh=stop*rms the script copies the .image from the preceding clean to prename.image'n' where 'n' equals the loop number of the preceding step. So in this M100 example you will see a M100_combine_cube.image and a M100_combine_cube.image2 where .image is the final image and .image2 is the next to last image. This is done for convenience in the case that thresh=stop*rms is too deep such that clean diverges, you will still be left with the clean image from the preceding loop that you can further investigate to understand why clean diverged. If all goes well with the final loop, the prename.image'n' can also be deleted. Divergence at thresh=stop*rms is often a sign that the image is "dynamic range limited" in other words the rms in channels with bright emission is significantly worse than for a line-free channel.

Image Analysis for the 7m+12m Data

Moment Maps for 7m+12m CO (1-0) Cube

Start by examining the final image cube. Determine the start and stopping channels for the line emission -- this will be used in the "chans" parameter of immoments.

# In CASA
viewer('M100_combine_cube.image')

Next determine the rms noise per channel and use that to exclude pixels from the moment images. All images are shown in the gallery at the end of the following section.

# In CASA
myimage='M100_combine_cube.image'
chanstat=imstat(imagename=myimage,chans='4')
rms1= chanstat['rms'][0]
chanstat=imstat(imagename=myimage,chans='66')
rms2= chanstat['rms'][0]
rms=0.5*(rms1+rms2)
print 'rms in a channel = '+str(rms)

Next make the moment maps. For the integrated intensity: moment 0, a 2 sigma cut often considerably improves the appearance of the image with little effect on the integrated intensity as long as emission free channels are excluded. For higher order moments it is necessary to exclude all low S/N data. Typically 5-6 sigma for the higher moments works well. We also apply further masking based on the .flux image because the edges of the combined mosaic are especially noisy because the 7m mosaic is somewhat larger than the 12m mosaic as described above (see Figures 1 & 2).

# In CASA
cpaste
os.system('rm -rf M100_combine_cube.image.mom0')
immoments(imagename = 'M100_combine_cube.image',
         moments = [0],
         axis = 'spectral',chans = '9~61',
         mask='M100_combine_cube.flux>0.3',,
         includepix = [rms*2,100.],
         outfile = 'M100_combine_cube.image.mom0')

os.system('rm -rf M100_combine_cube.image.mom1')
immoments(imagename = 'M100_combine_cube.image',
         moments = [1],
         axis = 'spectral',chans = '9~61',
         mask='M100_combine_cube.flux>0.3',
         includepix = [rms*5.5,100.],
         outfile = 'M100_combine_cube.image.mom1')
--

Now we can make some figures showing the moment maps (*note that this creates different looking files for me than the ones I have included here, which were made in the viewer -- is this true for others?*):

# In CASA
cpaste
os.system('rm -rf M100_combine_cube.image.mom*.png')
imview (raster=[{'file': 'M100_combine_cube.image.mom0',
                 'range': [-0.3,25.],'scaling': -1.3,'colorwedge': T}],
         zoom={'blc': [190,150],'trc': [650,610]},
         out='M100_combine_cube.image.mom0.png')

imview (raster=[{'file': 'M100_combine_cube.image.mom1',
                 'range': [1440,1695],'colorwedge': T}],
         zoom={'blc': [190,150],'trc': [650,610]}, 
         out='M100_combine_cube.image.mom1.png')
--

If you plan to use your moment 0 image to make measurements, it needs to be primary beam corrected first. First we need to subimage the .flux cube to extract a single plane that can be used to primary beam correct the moment 0 image.

# In CASA
os.system('rm -rf M100_combine_cube.flux.1ch')
imsubimage(imagename='M100_combine_cube.flux',
           outfile='M100_combine_cube.flux.1ch',
           chans='35')

Then primary beam correct the moment 0 image. This is the version that would be used for measurements, though the uncorrected one can be useful for figures. The difference is clear in the images seen below in the following section.

# In CASA
os.system('rm -rf M100_combine_cube.image.mom0.pbcor')
immath(imagename=['M100_combine_cube.image.mom0', \
                       'M100_combine_cube.flux.1ch'],
        expr='IM0/IM1',
        outfile='M100_combine_cube.image.mom0.pbcor')

Have a look at the difference the primary beam correction makes.

# In CASA
imview (raster=[{'file': 'M100_combine_cube.image.mom0',
                 'range': [-0.3,25.],'scaling': -1.3},
                {'file': 'M100_combine_cube.image.mom0.pbcor',
                 'range': [-0.3,25.],'scaling': -1.3}],
         zoom={'blc': [190,150],'trc': [650,610]})

With the viewer open, you can flip back and forth between the images to compare them. Next, make a figure.

# In CASA
os.system('rm -rf M100_combine_cube.image.mom0.pbcor.png')
imview (raster=[{'file': 'M100_combine_cube.image.mom0.pbcor',
                 'range': [-0.3,25.],'scaling': -1.3,'colorwedge': T}],
         zoom={'blc': [190,150],'trc': [650,610]},
         out='M100_combine_cube.image.mom0.pbcor.png')

Comparison with 7m, 12m Moment Maps

Below the moment maps from the 7m-only and the 12m-only data are shown for comparison. The moment maps were made using clean masks drawn by hand for comparison to the automasking technique; the two appear to be qualitatively similar. The range and scaling for the 12m-only figures are the same as that used for the 7m+12m figures for ease of comparison.

As expected, the 7m+12m image shows considerably more extended emission than the 12m-only data and finer detail than the 7m-only data. For comparison, the 7m+12m synthesized beam is 3.80"x2.50", while the 12m-only beam is 3.46"x2.37" and the 7m-only beam is 12.71"x10.09".

Convert 7m+12m Images to Fits Format

# In CASA
cpaste
os.system('rm -rf *.fits')
exportfits(imagename='M100_combine_cube.image',fitsimage='M100_combine_cube.image.fits')

exportfits(imagename='M100_combine_cube.flux',fitsimage='M100_combine_cube.flux.fits')

exportfits(imagename='M100_combine_cube.image.mom0',fitsimage='M100_combine_cube.image.mom0.fits')

exportfits(imagename='M100_combine_cube.image.mom0.pbcor',fitsimage='M100_combine_cube.image.mom0.pbcor.fits')

exportfits(imagename='M100_combine_cube.image.mom1',fitsimage='M100_combine_cube.image.mom1.fits')

--

Feathering the Total Power and 7m+12m Interferometric Images

Image the Total Power Data

Run listobs on the total power data to see what spw contains the CO

In CASA
os.system('rm -rf concat_m100.ms.listobs')
listobs(vis='concat_m100.ms',listfile='concat_m100.ms.listobs')

Image the TP data

In CASA
os.system('rm -rf TP_CO_cube')
sdimaging(infile='concat_m100.ms',
          field=0,spw=15,
          specunit='km/s',restfreq='115.271204GHz',
          dochannelmap=True,
          nchan=70,start=1400,step=5,
          gridfunction='gjinc',imsize=[50,50],
          cell=['10arcsec','10arcsec'],
          outfile='TP_CO_cube')

Determine the TP Restoring Beam and Convert to Jy/beam

Next we need to determine the restoring beam size. This will depend on 3 factors

(1) The expected FWHP for the 12m TP dishes which have a -12dB taper and a Gaussian shape. This is 1.17 lambda / 12m (radians)

(2) Any broadening of the beam due to less than ideal sampling. For an antenna with -12dB taper, Nyquist = FWHM/2.4. To have less than 1% broadening the sampling should be 2 x Nyquist.

(3) The convolution of the gridding kernel with the combination of (1) and (2)

<figure id="TP_sampling.png">

TP raster pointings.

</figure>

We have chosen the "gjinc" function in sdimaging because it produces the lease broadening of the effective beam. This is important because any broadening of the effective beam is equivalent to having used a smaller antenna.

For more information on these topics, see Mangum et al. 2007 (http://adsabs.harvard.edu/abs/2007A%26A...474..679M)

Two functions in the analysis utilities suite can be used to calculate the sampling of the TP data in the X and Y directions and then the final restoring beam, respectively.

In CASA
xSampling,ySampling=au.getTPSampling('concat_m100.ms',
      showplot=True,plotfile='TP_sampling.png')

xSampling = 10.3766 arcsec ySampling = 15.0002 arcsec

The frequency required for au.gjincBeam is the observed sky frequency near the center of the line (not the rest frequency). The pixelsize should be the same as that used for the cell in sdimaging. The sampling parameters were determined by au.getTPSampling

In CASA
RestorBeam=au.gjincBeam(frequency=114.66,pixelsize=10,xSamplingArcsec=xSampling,ySamplingArcsec=ySampling)

The output to the terminal will be:

Theoretical primary beam FWHP = 52.5822 arcsec Expected effective restoring beam along scan = 54.4937 arcsec Expected effective restoring beam between rows = 54.9774 arcsec Geometric mean = 54.735 arcsec


Next set the restoring beam to the derived value.

In CASA
ia.open('TP_CO_cube')
ia.setrestoringbeam(major=str(RestorBeam)+'arcsec',
                    minor=str(RestorBeam)+'arcsec',
                    pa='0deg')
ia.done()

Convert the image from K to Jy assuming Jy/K = 55.0 Note currently sdimaging reports that the image it makes is in Jy/beam. This is a bug.

In CASA
os.system('rm -rf TP_CO_cube_Jy')
immath(imagename='TP_CO_cube',
       expr='IM0*55.0',
       outfile='TP_CO_cube_Jy')

Prepare Images for Feathering

Regrid TP image to match the shape of the 7m+12m image.

In CASA
os.system('rm -rf TP_CO_cube_Jy.regrid')
imregrid(imagename='TP_CO_cube_Jy',
         template='M100_Intcombo_0.193_cube.image',
         shape=[800,800,1,70],
         axes=[0,1],output='TP_CO_cube_Jy.regrid')

Subimage both images to a matching size, excluding regions masked by the clean pbmin=0.2 and noisy edge pixels in the TP image. The Viewer can be used to determine a good joint region.

In CASA
os.system('rm -rf M100_Intcombo_0.193_cube.image.subim')
imsubimage(imagename='M100_Intcombo_0.193_cube.image',
           outfile='M100_Intcombo_0.193_cube.image.subim',
           box='230,184,604,598')
os.system('rm -rf TP_CO_cube_Jy.regrid.subim')
imsubimage(imagename='TP_CO_cube_Jy.regrid',
           outfile='TP_CO_cube_Jy.regrid.subim',
           box='230,184,604,598')

Creat subimaged version the mosaic response

In CASA
os.system('rm -rf M100_Intcombo_0.193_cube.flux.subim')
imsubimage(imagename='M100_Intcombo_0.193_cube.flux',
           outfile='M100_Intcombo_0.193_cube.flux.subim',
           box='230,184,604,598')

Multiply the TP image by the mosaic beam response of the 7m+12m image

In CASA
os.system('rm -rf TP_CO_cube_Jy.regrid.subim.depb')
immath(imagename=['TP_CO_cube_Jy.regrid.subim',
                  'M100_Intcombo_0.193_cube.flux.subim'],
       expr='IM0*IM1',
       outfile='TP_CO_cube_Jy.regrid.subim.depb')

Feather TP Cube with 7m+12m Cube

Feather with default parameters

In CASA
os.system('rm -rf M100_Feather_CO')
feather(imagename='M100_Feather_CO',
        highres='M100_Intcombo_0.193_cube.image.subim',
        lowres='TP_CO_cube_Jy.regrid.subim.depb')

Make Moment Maps of TP and Feathered Images

We will use the same technique as the 7m+12m image analysis above to make moment maps.

First, make moment maps for the TP image.

In CASA
myimage='TP_CO_cube_Jy.regrid.subim'
chanstat=imstat(imagename=myimage,chans='4')
rms1= chanstat['rms'][0]
chanstat=imstat(imagename=myimage,chans='66')
rms2= chanstat['rms'][0]
rms=0.5*(rms1+rms2)  

os.system('rm -rf TP_CO_cube_Jy.regrid.subim.mom0')
immoments(imagename = 'TP_CO_cube_Jy.regrid.subim',
         moments = [0],
         axis = 'spectral',
         chans = '10~61',
         includepix = [rms*2.,50],
         outfile = 'TP_CO_cube_Jy.regrid.subim.mom0')
   

os.system('rm -rf TP_CO_cube_Jy.regrid.subim.mom1')
immoments(imagename = 'TP_CO_cube_Jy.regrid.subim',
         moments = [1],
         axis = 'spectral',
         chans = '10~61',
         includepix = [rms*5.5,50],
         outfile = 'TP_CO_cube_Jy.regrid.subim.mom1')
In CASA
os.system('rm -rf TP_CO_cube_Jy.regrid.subim .mom*.png')
imview (raster=[{'file': 'TP_CO_cube_Jy.regrid.subim.mom0',
                 'range': [-0.3,900.],'scaling': -1.0,'colorwedge': T}],
         out='TP_CO_cube_Jy.regrid.subim.mom0.png')
 
imview (raster=[{'file': 'TP_CO_cube_Jy.regrid.subim.mom1',
                 'range': [1455,1695],'colorwedge': T}], 
         out='TP_CO_cube_Jy.regrid.subim.mom1.png')

Make moment maps for the feathered image.

In CASA
myimage='M100_Feather_CO'
chanstat=imstat(imagename=myimage,chans='4')
rms1= chanstat['rms'][0]
chanstat=imstat(imagename=myimage,chans='66')
rms2= chanstat['rms'][0]
rms=0.5*(rms1+rms2)  

os.system('rm -rf M100_Feather_CO.mom0')
immoments(imagename = 'M100_Feather_CO',
         moments = [0],
         axis = 'spectral',
         chans = '10~61',
         includepix = [rms*2.,50],
         outfile = 'M100_Feather_CO.mom0')
   

os.system('rm -rf M100_Feather_CO.mom1')
immoments(imagename = 'M100_Feather_CO',
         moments = [1],
         axis = 'spectral',
         chans = '10~61',
         includepix = [rms*5.5,50],
         outfile = 'M100_Feather_CO.mom1')


In CASA
os.system('rm -rf M100_Feather_CO.mom*.png')
imview (raster=[{'file': 'M100_Feather_CO.mom0',
                 'range': [-0.3,25.],'scaling': -1.0,'colorwedge': T}],
         out='M100_Feather_CO.mom0.png')
 
imview (raster=[{'file': 'M100_Feather_CO.mom1',
                 'range': [1455,1695],'colorwedge': T}], 
         out='M100_Feather_CO.mom1.png')


Primary Beam Correct the Moment 0 Image

Apply the primary beam response to the feathered image

In CASA
os.system('rm -rf M100_Intcombo_0.193_cube.flux.1ch.subimage')
imsubimage(imagename='M100_Intcombo_0.193_cube.flux',
           outfile='M100_Intcombo_0.193_cube.flux.1ch.subimage',
           box='230,184,604,598',           
           chans='35')
In CASA
os.system('rm -rf M100_Feather_CO.mom0.pbcor')
immath(imagename=['M100_Feather_CO.mom0', \
                       'M100_Intcombo_0.193_cube.flux.1ch.subimage'],
        expr='IM0/IM1',
        outfile='M100_Feather_CO.mom0.pbcor')

Create a figure of primary beam corrected moment 0.

In CASA
os.system('rm -rf M100_Feather_CO.mom0.pbcor.png')
imview (raster=[{'file': 'M100_Feather_CO.mom0.pbcor',
                 'range': [-0.3,25.],'scaling': -1.0,'colorwedge': T}],
         out='M100_Feather_CO.mom0.pbcor.png')

Compare the Different Images

Now lets compare all the different images:









Last checked on CASA Version 4.1.0.