M100 Band3 ACA 4.2.2: Difference between revisions

From CASA Guides
Jump to navigationJump to search
Ahiguchi (talk | contribs)
No edit summary
Ahiguchi (talk | contribs)
No edit summary
Line 589: Line 589:
flag version tables.
flag version tables.
</pre>
</pre>
==Create and Apply Tsys and Antenna Position Calibration Tables==
<source lang="python">
#In CASA
basename=['uid___A002_X5e971a_X124','uid___A002_X5e971a_X2e7','uid___A002_X5e9ff1_X3f3','uid___A002_X5e9ff1_X5b3', 'uid___A002_X60b415_X44','uid___A002_X62f759_X4eb']
</source>
===Tsys===
The Tsys calibration gives a first-order correction for the atmospheric opacity as a function of time and frequency and associates weights with each visibility that persists through imaging.
Use gencal to create the Tsys calibration tables from the spectral windows with CALIBRATE_ATMOSPHERE intents in listobs.
<source lang="python">
#In CASA
#Removing existing Tsys information
os.system('rm -rf *tdm.tsys')
for asdm in basename_all:
    print "Creating TDM Tsys Table for "+asdm
    gencal(vis=asdm+'.ms',caltable=asdm+'.tdm.tsys',spw='5,7',caltype='tsys')
</source>
Later in the applycal stage this TDM Tsys table will be interpolated to the FDM (3840 channels per spw) science spectral windows 1 and 3.
Next we inspect the Tsys tables for the spectral window spw=5 with the task {{plotcal}}. We want to check that Tsys data have reasonable values and identify any unexpected features as a function of either time or frequency. To get an idea of sensible Tsys under average atmospheric observations consult the ALMA sensitivity calculator, accessible from http://www.almascience.org (via the "Documents & Tools" link).
We start by plotting the Tsys for all the antennas and polarizations (XX and YY) as a function of time for each. Here and throughout we focus on spw 1, which contains CO(3-2):
<figure id="uid___A002_X1ff7b0_X1c8.tsys_vs_time.page1.png">
[[File:uid___A002_X1ff7b0_X1c8.tsys_vs_time.page1.png|200px|thumb|right|<caption> Tsys vs. time plot for uid_A002_X1ff7b0_Xb (northern mosaic). First 8 antennas. Note the high y-axis values for DV04. The two different colors indicate the two polarizations (XX and YY).</caption>]]
</figure>
<figure id="uid___A002_X1ff7b0_X1c8.tsys_vs_time.page2.png">
[[File:uid___A002_X1ff7b0_X1c8.tsys_vs_time.page2.png|200px|thumb|right|<caption> Tsys vs. time plot for uid_A002_X1ff7b0_Xb (northern mosaic). Remaining antennas.</caption>]]
</figure>
<source lang="python">
#In CASA
basename=['uid___A002_X5e971a_X124','uid___A002_X5e971a_X2e7','uid___A002_X5e9ff1_X3f3','uid___A002_X5e9ff1_X5b3', 'uid___A002_X60b415_X44','uid___A002_X62f759_X4eb']
<source lang="python">
#In CASA
for name in basename:
    os.system('rm -rf name+'.ms.tsys')
    gencal(vis = name+'.ms',
      caltable=name+'.ms.tsys',
      caltype = 'tsys')
</source>
This sequence loops over all of our files and plots Tsys as a function of time for channel 50 in spectral window 5. In the call to {{plotcal}}:
* '''subplot'''=421 parameter sets up a 4 x 2 panel grid.
* '''iteration''' tells {{plotcal}} to make a separate plot for each antenna.
* '''spw''' '5:50~50' selects spw '5' channel 50-50. This allows us to cleanly separate time variations from frequency variations.
Because 8 panels (2 panels for each antenna - LSB and USB) is not enough to show all antennas on one page, there are two plotcal calls: one for the first 8 antennas ('''antenna'''=0~7), and then for the remaining antennas ('''antenna'''=8~15). The '''fontsize''' needs to be set to a small value or the text overlaps.
The 'raw_input' commands will wait for you to hit Enter before issuing the next plot command. In the example above these are commented out (the leading "#" means that CASA will ignore them). If you would like to interactively cycle through the plots, uncomment them by removing the "#". Otherwise, the '''figfile''' parameter directs the output to .png files for later inspection. The easiest way to look at the 20 plots produced here is to simply inspect the .png files using your favorite viewer.
The Tsys values in <xr id="uid___A002_X1ff7b0_X1c8.tsys_vs_time.page1.png"/> and <xr id="uid___A002_X1ff7b0_X1c8.tsys_vs_time.page2.png"/> look reliable, with typical values ~150 K except for some large values of Tsys at ~400 and 500 K for DV04. We will flag the data for that antenna later.
We will also want to look at Tsys as a function of frequency. This will use the analysisutils package mentioned at the beginning of this guide (called by the au. command)
<source lang="python">
#In CASA
basename_all=["uid___A002_X1ff7b0_Xb","uid___A002_X207fe4_X3a","uid___A002_X207fe4_X3b9",
    "uid___A002_X2181fb_X49","uid___A002_X1ff7b0_X1c8","uid___A002_X207fe4_X1f7",
    "uid___A002_X207fe4_X4d7","uid___A002_X215db8_X18","uid___A002_X215db8_X1d5",
    "uid___A002_X215db8_X392"]
for asdm in basename_all:
  os.system('rm -rf cal_plots/Tsys_plots/'+asdm+'.tdm.tsys*')
  tsysfields=['3c279','Titan','Antennae']
  caltable=asdm+'.tdm.tsys'
  for field in tsysfields:
    au.plotbandpass(caltable=caltable,yaxis='amp',field=field,xaxis='freq',
                showatm=True,overlay='time',
                figfile='cal_plots/Tsys_plots/'+caltable+'.'+field,buildpdf=False,
                interactive=False,chanrange='8~120',subplot=42)
</source>
<figure id="Uid___A002_X1ff7b0_Xb.tdm.tsys.3c279.DV02.spw5.CASA3_4.png">
[[File:Uid___A002_X1ff7b0_Xb.tdm.tsys.3c279.DV02.spw5.CASA3_4.png|200px|thumb|right|<caption> Tsys vs. frequency plot for uid_A002_X1ff7b0_Xb (northern mosaic). First 4 antennas. Note the high y-axis values for DV04 and the mesospheric line near 343.2 GHz.</caption>]]
</figure>
<figure id="Uid___A002_X1ff7b0_Xb.tdm.tsys.3c279.DV08.spw5.CASA3_4.png">
[[File:Uid___A002_X1ff7b0_Xb.tdm.tsys.3c279.DV08.spw5.CASA3_4.png|200px|thumb|right|<caption> Tsys vs. frequency plot for uid_A002_X1ff7b0_Xb (northern mosaic). Next 4 antennas.</caption>]]
</figure>
<figure id="Uid___A002_X1ff7b0_Xb.tdm.tsys.3c279.PM01.spw5.CASA3_4.png">
[[File:Uid___A002_X1ff7b0_Xb.tdm.tsys.3c279.PM01.spw5.CASA3_4.png|200px|thumb|right|<caption> Tsys vs. frequency plot for uid_A002_X1ff7b0_Xb (northern mosaic). Remaining antennas.</caption>]]
</figure>
<figure id="Uid___A002_X215db8_X392.tdm.tsys.3c279.DV11.spw5.CASA3_4.png">
[[File:Uid___A002_X215db8_X392.tdm.tsys.3c279.DV11.spw5.CASA3_4.png|200px|thumb|right|<caption> Tsys vs. frequency plot for uid___A002_X215db8_X392. Note the pathological behavior for DV12.</caption>]]
</figure>
Now have a look at the Tsys vs. frequency plots or see <xr id="Uid___A002_X1ff7b0_Xb.tdm.tsys.3c279.DV02.spw5.CASA3_4.png"/>, <xr id="Uid___A002_X1ff7b0_Xb.tdm.tsys.3c279.DV08.spw5.CASA3_4.png"/>, and <xr id="Uid___A002_X1ff7b0_Xb.tdm.tsys.3c279.PM01.spw5.CASA3_4.png"/> for examples on the first data set. You can see the effect of a close pair of atmospheric ozone absorption lines at about 343.2 GHz that makes Tsys larger near that frequency in all antennas. Applying the Tsys calibration tables will minimize the contribution of these atmospheric lines. Again DV04 stands out with its very high Tsys.  Although not present in the first data sets, Antenna DV12 exhibits periodic spikes in Tsys vs. frequency for one polarization (see <xr id="Uid___A002_X215db8_X392.tdm.tsys.3c279.DV11.spw5.CASA3_4.png"/> for an example from a later data set).  It may or may not be possible to calibrate that behavior out.  We will make a note to look carefully at DV12 further on in the calibration process.
===WVR===
The WVR calibration uses observations of the wings of the 183 GHz atmospheric water line to correct for phase variations as a function of time. As noted in the tsys section, this run of gencal will append to existing WVR produced tables. To avoid this, preexisting wvrgcal data is removed.
<source lang="python">
#In CASA
#Removing existing WVR information
os.system('rm -rf *.wvrgcal')
for asdm in basename_all:
    wvrgcal(vis=asdm+'.ms',caltable=asdm+'.wvrgcal',toffset=-1)
</source>
===Antenna Positions===
The antenna position table reflects refinements in the measured positions of the antennas from those stored in the data. gencal will now be used put antenna position data into each observation. Again, gencal will merely append to existing antenna position data, ruining any subsequent results. We start by removing any existing antenna position refinements, followed by defining the antenna names, then their refinements (both as arrays), finally running gencal to create the information CASA can refer to for antenna positions.
<source lang="python">
#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X1ff7b0_Xb.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:21]+'.antpos')
antenna='DV02,DV04,DV06,DV07,DV08,DV09,DV10,DV11,PM01,PM02,PM03'
parameter = [
0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00027, 0.00033, 0.00022, #DV06-T704
0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00056, 0.00028, 0.00026, #DV10-A009
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00034, 0.00092, 0.00027, #PM02-A017 Before July 1
-0.00007, 0.00034, -0.00004] #PM03-J504
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
      antenna=antenna,parameter=parameter)
#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X207fe4_X3a.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:22]+'.antpos')
antenna='DV02,DV04,DV05,DV06,DV07,DV08,DV09,DV10,DV11,DV12,PM01,PM03'
parameter = [
0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00019,-0.00003, 0.00035, #DV05-A067
-0.00027, 0.00033, 0.00022, #DV06-T704
0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00056, 0.00028, 0.00026, #DV10-A009
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00018, 0.00010,-0.00014, #DV12-A011
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00007, 0.00034, -0.00004] #PM03-J504
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
      antenna=antenna,parameter=parameter)
#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X207fe4_X3b9.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:23]+'.antpos')
antenna='DV02,DV04,DV05,DV06,DV07,DV08,DV09,DV10,DV11,DV12,PM01,PM03'
parameter = [
0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00019,-0.00003, 0.00035, #DV05-A067
-0.00027, 0.00033, 0.00022, #DV06-T704
0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00056, 0.00028, 0.00026, #DV10-A009
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00018, 0.00010,-0.00014, #DV12-A011
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00007, 0.00034, -0.00004] #PM03-J504
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
      antenna=antenna,parameter=parameter)
#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X2181fb_X49.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:22]+'.antpos')
antenna='DV01,DV02,DV04,DV05,DV06,DV07,DV08,DV09,DV10,DV11,DV12,DV13,PM01,PM03'
parameter = [
-0.00004, 0.00026, 0.00019, #DV01-A137
0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00019,-0.00003, 0.00035, #DV05-A067
-0.00027, 0.00033, 0.00022, #DV06-T704
0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00056, 0.00028, 0.00026, #DV10-A009
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00018, 0.00010,-0.00014, #DV12-A011
0.00009, 0.00033, 0.00023, #DV13-A075
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00007, 0.00034, -0.00004] #PM03-J504
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
      antenna=antenna,parameter=parameter)
#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X1ff7b0_X1c8.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:23]+'.antpos')
antenna='DV02,DV04,DV06,DV07,DV08,DV09,DV10,DV11,PM01,PM02,PM03'
parameter = [
0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00027, 0.00033, 0.00022, #DV06-T704
0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00056, 0.00028, 0.00026, #DV10-A009
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00034, 0.00092, 0.00027, #PM02-A017 Before July 1
-0.00007, 0.00034, -0.00004] #PM03-J504
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
      antenna=antenna,parameter=parameter)
#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X207fe4_X1f7.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:23]+'.antpos')
antenna='DV02,DV04,DV05,DV06,DV07,DV08,DV09,DV10,DV11,DV12,PM01,PM03'
parameter = [
0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00019,-0.00003, 0.00035, #DV05-A067
-0.00027, 0.00033, 0.00022, #DV06-T704
0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00056, 0.00028, 0.00026, #DV10-A009
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00018, 0.00010,-0.00014, #DV12-A011
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00007, 0.00034, -0.00004] #PM03-J504
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
      antenna=antenna,parameter=parameter)
#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X207fe4_X4d7.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:23]+'.antpos')
antenna='DV02,DV04,DV05,DV06,DV07,DV08,DV09,DV11,DV12,PM01,PM03'
parameter = [
0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00019,-0.00003, 0.00035, #DV05-A067
-0.00027, 0.00033, 0.00022, #DV06-T704
0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00018, 0.00010,-0.00014, #DV12-A011
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00007, 0.00034, -0.00004] #PM03-J504
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
      antenna=antenna,parameter=parameter)
#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X215db8_X18.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:22]+'.antpos')
antenna='DV02,DV04,DV05,DV06,DV07,DV08,DV09,DV10,DV11,DV12,DV13,PM01,PM03'
parameter = [
0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00019,-0.00003, 0.00035, #DV05-A067
-0.00027, 0.00033, 0.00022, #DV06-T704
0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00056, 0.00028, 0.00026, #DV10-A009
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00018, 0.00010,-0.00014, #DV12-A011
0.00009, 0.00033, 0.00023, #DV13-A075
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00007, 0.00034, -0.00004] #PM03-J504
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
      antenna=antenna,parameter=parameter)
#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X215db8_X1d5.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:23]+'.antpos')
antenna='DV02,DV04,DV05,DV06,DV07,DV08,DV09,DV10,DV11,DV12,DV13,PM01,PM03'
parameter = [
0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00019,-0.00003, 0.00035, #DV05-A067
-0.00027, 0.00033, 0.00022, #DV06-T704
0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00056, 0.00028, 0.00026, #DV10-A009
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00018, 0.00010,-0.00014, #DV12-A011
0.00009, 0.00033, 0.00023, #DV13-A075
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00007, 0.00034, -0.00004] #PM03-J504
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
      antenna=antenna,parameter=parameter)
#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X215db8_X392.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:23]+'.antpos')
antenna='DV02,DV04,DV05,DV06,DV07,DV08,DV09,DV10,DV11,DV12,DV13,PM01,PM03'
parameter = [
0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00019,-0.00003, 0.00035, #DV05-A067
-0.00027, 0.00033, 0.00022, #DV06-T704
0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00056, 0.00028, 0.00026, #DV10-A009
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00018, 0.00010,-0.00014, #DV12-A011
0.00009, 0.00033, 0.00023, #DV13-A075
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00007, 0.00034, -0.00004] #PM03-J504
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
      antenna=antenna,parameter=parameter)
</source>

Revision as of 06:32, 7 June 2013

  • Details of the ALMA observations are provided at M100Band3
  • This portion of the guide covers calibration of the raw visibility data. To skip to the imaging portion of the guide, see: M100Band3 Imaging 4.1.

Overview

This part of the M100 Band 3 7m CASA guide will step you through the calibration of the visibility data. We will begin by flagging (marking as bad) data known to be useless before any inspection, for example data where one telescope blocks the line of sight of another. Then we will apply telescope-generated calibration tables to partially correct for atmospheric effects. After inspecting the data, we will flag some additional data that exhibit pathologies. Then we will use observations of the calibrators Titan and 3c279 to derive the phase and amplitude response of individual antennas as a function of time and frequency ("phase", "amplitude", and "bandpass" calibrations). We will apply these to the data and then extract the calibrated source data into a file appropriate for imaging.

The general procedure in this guide follows the other ALMA CASA guides: NGC3256Band3 and TWHydraBand7.

Unpack the Data

Once you have downloaded the M100_Band3_7m_CalibratedData.tgz, unpack the file in a terminal outside CASA using

tar -xvzf M100_Band3_7m_CalibratedData.tgz

then change directory to the new directory

cd M100_Band3_7m_CalibratedData

You may wish to type

ls

to look at the files present. You should see a set of files with extension ".ms". These are CASA measurement set (MS) files. The data have already been converted to MS format from the native ALMA format using the CASA task importasdm. In addition to the data, we provide you with calibration tables containing system temperature (Tsys), water vapor radiometer (WVR), and antenna position information. For Early Science, these tables will either be pre-applied or supplied with the data.

This guide requires Python module analysisUtils. If you have not already installed analysisUtils please follow the link to do so.

To begin, start CASA by typing

casapy

Be sure that you are using the version indicated at the top of this page.

Confirm your version of CASA

This guide has been written for CASA release 4.1.0. Please confirm your version before proceeding.

# In CASA
version = casadef.casa_version
print "You are using " + version
if (version < '4.1.0'):
    print "YOUR VERSION OF CASA IS TOO OLD FOR THIS GUIDE."
    print "PLEASE UPDATE IT BEFORE PROCEEDING."
else:
    print "Your version of CASA is appropriate for this guide."

Install Analysis Utilities

Analysis Utilities (or analysisUtils for short) is a small set of Python scripts that provide a number of analysis and plotting utilities for ALMA data reduction. This guide uses a few of these utilities. They are very easy to install (just download and untar). See

http://casaguides.nrao.edu/index.php?title=Analysis_Utilities

for a full description and download instructions. Analysis Utilities are updated frequently so if its been a while since you installed it, its probably worth doing it again. If you are at an ALMA site or ARC, the analysis utilities are probably already installed and up to date.


Initial Inspection

First we will take stock of what we have. If you have not already done so, begin by reviewing the description of the observations here: M100Band3. The 6 data sets each target mosaic, as follows:

  • uid___A002_X5e971a_X124.ms
  • uid___A002_X5e971a_X2e7.ms
  • uid___A002_X5e9ff1_X3f3.ms
  • uid___A002_X5e9ff1_X5b3.ms
  • uid___A002_X60b415_X44.ms
  • uid___A002_X62f759_X4eb.ms

The first step is to get basic information about the data: targets observed, time range, spectral setup, and so on. We do this using the task listobs, which will output a detailed summary of each dataset. Enter the following commands into CASA:

# In CASA

# Define a python list holding the names of all of our data sets
basename=['uid___A002_X5e971a_X124','uid___A002_X5e971a_X2e7','uid___A002_X5e9ff1_X3f3','uid___A002_X5e9ff1_X5b3', 'uid___A002_X60b415_X44','uid___A002_X62f759_X4eb']

# Initialize user-input string.  (for Python testing)
dummy_string = ''

# Loop over each element in the list and create summary file using listobs
for asdm in basename_all:
    os.system('rm '+asdm+'.listobs.txt')
    listobs(vis=asdm+'.ms', listfile=asdm+'.listobs.txt', verbose=True)

Note that after cutting and pasting a 'for' loop like this you often have to press return twice to execute. You may also want to take care to paste a line at a time if you are having trouble copy and pasting. Even better, you can use "cpaste" to paste blocks of code. To do so type "cpaste" at the CASA prompt, paste your commands, and then type "--" and hit return on the final (otherwise empty) line. This should look something like this:


CASA <8>: cpaste
Pasting code; enter '--' alone on the line to stop.
:basename=['uid___A002_X5e971a_X124','uid___A002_X5e971a_X2e7','uid___A002_X5e9ff1_X3f3','uid___A002_X5e9ff1_X5b3', 'uid___A002_X60b415_X44','uid___A002_X62f759_X4eb']
:
:for asdm in basename_all:
:    print asdm
:--
uid___A002_X5e971a_X124
uid___A002_X5e971a_X2e7
uid___A002_X5e9ff1_X3f3
uid___A002_X5e9ff1_X5b3
uid___A002_X60b415_X44
uid___A002_X62f759_X4eb

CASA <9>: 

cpaste should be much more robust than copying-and-pasting directly into the shell but if you have trouble, just carefully paste one line at a time directly into CASA and hit return until the desired command executes.

These commands define a python list called "basename_all", which contains the name of all 6 MS files. The "for" loop executes for each element in basename_all, calling listobs and directing the output to a file called, e.g., "uid___A002_X5e971a_X124.ms.listobs.txt" for the first measurement set. You can browse through the listobs output as you would normally look at a text file (use emacs, vi, or another editor). You can also send the output to the terminal from inside of CASA. To do so type:

# In CASA
os.system('cat uid___A002_X5e971a_X124.ms.listobs.txt')

or

# In CASA
os.system('more uid___A002_X5e971a_X124.ms.listobs.txt')

CASA knows a few basic shell commands like 'cat', 'ls', and 'rm' but for more complex commands you will need to run them inside 'os.system("command")'. For more information see http://casa.nrao.edu/ .

Here is an example of the (abridged) output from listobs for the first dataset in the list, uid___A002_X5e971a_X124.ms, which targets the Northern Mosaic. You would see this if you had specified verbose to be False in the listobs call:

================================================================================
           MeasurementSet Name:  /lustre/naasc/almauser/M100Band3/uid___A002_X5e971a_X124.ms      MS Version 2
================================================================================
Observer: cvlahakis     Project: uid://A002/X5d9e5c/X5d  
Observation: ALMA
Data records: 940680       Total integration time = 5436.77 seconds
Observed from   17-Mar-2013/04:07:32.8   to   17-Mar-2013/05:38:09.6 (UTC)

ObservationID = 0         ArrayID = 0
Date        Timerange (UTC)          Scan  FldId FieldName           nRows   nUnflRows   SpwIds   Average Interval(s)    ScanIntent
17-Mar-2013/04:07:32.3 - 04:09:35.4     1      0 J1229+0203            43200  43200.00  [0, 1, 2, 3, 4, 5, 6, 7]  [1.01, 1.01, 1.01, 1.01, 1.01, 1.01, 1.01, 1.01] CALIBRATE_POINTING#ON_SOURCE
              04:10:57.2 - 04:11:57.7     2      0 J1229+0203            45360  45360.00  [8, 9, 10, 11, 12, 13, 14, 15]  [0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48] CALIBRATE_SIDEBAND_RATIO#ON_SOURCE
              04:12:48.5 - 04:14:00.0     3      0 J1229+0203            12960  12960.00  [8, 9, 10, 11, 12, 13, 14, 15]  [0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48] CALIBRATE_ATMOSPHERE#ON_SOURCE
              04:14:44.2 - 04:24:49.9     4      0 J1229+0203           118800  44880.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] CALIBRATE_BANDPASS#ON_SOURCE
              04:25:53.4 - 04:27:56.4     5      1 J1445-1629            43200  43200.00  [0, 1, 2, 3, 4, 5, 6, 7]  [1.01, 1.01, 1.01, 1.01, 1.01, 1.01, 1.01, 1.01] CALIBRATE_POINTING#ON_SOURCE
              04:29:02.6 - 04:30:13.9     6      2 Titan                 12960  12960.00  [8, 9, 10, 11, 12, 13, 14, 15]  [0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48] CALIBRATE_ATMOSPHERE#ON_SOURCE
              04:30:57.7 - 04:36:00.5     7      2 Titan                 59400  22468.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] CALIBRATE_AMPLI#ON_SOURCE
              04:37:10.1 - 04:39:13.2     8      3 J1215+1654            43200  43200.00  [0, 1, 2, 3, 4, 5, 6, 7]  [1.01, 1.01, 1.01, 1.01, 1.01, 1.01, 1.01, 1.01] CALIBRATE_POINTING#ON_SOURCE
              04:39:58.8 - 04:40:59.3     9      3 J1215+1654            11880   4488.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] CALIBRATE_PHASE#ON_SOURCE
              04:42:08.6 - 04:43:20.0    10      4 M100                  12960  12960.00  [8, 9, 10, 11, 12, 13, 14, 15]  [0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48] CALIBRATE_ATMOSPHERE#ON_SOURCE
              04:44:04.3 - 04:50:43.7    11      5 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:44:04.3 - 04:50:43.7    11      6 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:44:04.3 - 04:50:43.7    11      7 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:44:04.3 - 04:50:43.7    11      8 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:44:04.3 - 04:50:43.7    11      9 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:44:04.3 - 04:50:43.7    11     10 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:44:04.3 - 04:50:43.7    11     11 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:44:04.3 - 04:50:43.7    11     12 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:44:04.3 - 04:50:43.7    11     13 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:44:04.3 - 04:50:43.7    11     14 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:44:04.3 - 04:50:43.7    11     15 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:44:04.3 - 04:50:43.7    11     16 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:44:04.3 - 04:50:43.7    11     17 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:51:04.3 - 04:52:04.8    12      3 J1215+1654            11880   4488.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] CALIBRATE_PHASE#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13      5 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13      6 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13      7 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13     18 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13     19 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13     20 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13     21 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13     22 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13     23 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13     24 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13     25 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13     26 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13     27 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:59:35.7 - 05:00:36.2    14      3 J1215+1654            11880   4488.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] CALIBRATE_PHASE#ON_SOURCE
              05:01:55.1 - 05:03:06.5    15      4 M100                  12960  12960.00  [8, 9, 10, 11, 12, 13, 14, 15]  [0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48] CALIBRATE_ATMOSPHERE#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16      8 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16      9 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     10 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     11 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     12 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     13 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     14 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     15 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     16 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     17 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     18 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     19 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     20 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:10:50.7 - 05:11:51.2    17      3 J1215+1654            11880   4488.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] CALIBRATE_PHASE#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18      5 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18      6 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18      7 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18      8 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18      9 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18     10 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18     21 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18     22 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18     23 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18     24 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18     25 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18     26 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18     27 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:19:22.0 - 05:20:22.6    19      3 J1215+1654            11880   4488.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] CALIBRATE_PHASE#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13     20 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13     21 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13     22 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13     23 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13     24 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13     25 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13     26 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:52:35.8 - 04:59:15.3    13     27 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              04:59:35.7 - 05:00:36.2    14      3 J1215+1654            11880   4488.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] CALIBRATE_PHASE#ON_SOURCE
              05:01:55.1 - 05:03:06.5    15      4 M100                  12960  12960.00  [8, 9, 10, 11, 12, 13, 14, 15]  [0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48] CALIBRATE_ATMOSPHERE#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16      8 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16      9 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     10 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     11 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     12 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     13 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     14 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     15 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     16 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     17 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     18 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     19 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:03:22.2 - 05:10:01.6    16     20 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:10:50.7 - 05:11:51.2    17      3 J1215+1654            11880   4488.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] CALIBRATE_PHASE#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18      5 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18      6 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18      7 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18      8 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18      9 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18     10 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18     21 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18     22 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18     23 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18     24 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18     25 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18     26 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:12:22.0 - 05:19:01.4    18     27 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:19:22.0 - 05:20:22.6    19      3 J1215+1654            11880   4488.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] CALIBRATE_PHASE#ON_SOURCE
              05:21:41.7 - 05:22:53.4    20      4 M100                  12960  12960.00  [8, 9, 10, 11, 12, 13, 14, 15]  [0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48] CALIBRATE_ATMOSPHERE#ON_SOURCE
              05:23:37.6 - 05:30:17.0    21     11 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:23:37.6 - 05:30:17.0    21     12 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:23:37.6 - 05:30:17.0    21     13 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:23:37.6 - 05:30:17.0    21     14 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:23:37.6 - 05:30:17.0    21     15 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:23:37.6 - 05:30:17.0    21     16 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:23:37.6 - 05:30:17.0    21     17 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:23:37.6 - 05:30:17.0    21     18 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:23:37.6 - 05:30:17.0    21     19 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:23:37.6 - 05:30:17.0    21     20 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:23:37.6 - 05:30:17.0    21     21 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:23:37.6 - 05:30:17.0    21     22 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:23:37.6 - 05:30:17.0    21     23 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:30:37.5 - 05:31:38.1    22      3 J1215+1654            11880   4488.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] CALIBRATE_PHASE#ON_SOURCE
              05:32:08.4 - 05:36:44.7    23      5 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:32:08.4 - 05:36:44.7    23      6 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:32:08.4 - 05:36:44.7    23      7 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:32:08.4 - 05:36:44.7    23      8 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:32:08.4 - 05:36:44.7    23      9 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:32:08.4 - 05:36:44.7    23     24 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:32:08.4 - 05:36:44.7    23     25 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:32:08.4 - 05:36:44.7    23     26 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:32:08.4 - 05:36:44.7    23     27 M100                   5940   2244.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] OBSERVE_TARGET#ON_SOURCE
              05:37:09.6 - 05:38:10.1    24      3 J1215+1654            11880   4488.00  [16, 17, 18, 19, 20, 21, 22, 23]  [10.1, 1.01, 10.1, 1.01, 10.1, 1.01, 10.1, 1.01] CALIBRATE_PHASE#ON_SOURCE
           (nRows = Total number of rows per scan) 


Fields: 28
  ID   Code Name                RA               Decl           Epoch   SrcId    nRows  nUnflRows
  0    none J1229+0203          12:29:06.699720 +02.03.08.59820 J2000   0       220320  146400.00
  1    none J1445-1629          14:45:53.376290 -16.29.01.61880 J2000   1        43200   43200.00
  2    none Titan               14:36:50.919019 -12.33.38.18202 J2000   1        72360   35428.00
  3    none J1215+1654          12:15:03.979130 +16.54.37.95700 J2000   2       126360   74616.00
  4    none M100                12:22:54.899040 +15.49.20.57160 J2000   2        38880   38880.00
  5    none M100                12:22:57.009007 +15.49.13.60358 J2000   3        23760    8976.00
  6    none M100                12:22:57.009041 +15.49.58.08112 J2000   3        23760    8976.00
  7    none M100                12:22:54.339884 +15.47.22.41016 J2000   3        23760    8976.00
  8    none M100                12:22:54.339918 +15.48.06.88770 J2000   3        23760    8976.00
  9    none M100                12:22:54.339952 +15.48.51.36524 J2000   3        23760    8976.00
  10   none M100                12:22:54.339986 +15.49.35.84278 J2000   3        17820    6732.00
  11   none M100                12:22:54.340020 +15.50.20.32032 J2000   3        17820    6732.00
  12   none M100                12:22:51.670863 +15.47.44.64936 J2000   3        17820    6732.00
  13   none M100                12:22:51.670897 +15.48.29.12690 J2000   3        17820    6732.00
  14   none M100                12:22:51.670931 +15.49.13.60444 J2000   3        17820    6732.00
  15   none M100                12:22:51.670966 +15.49.58.08198 J2000   3        17820    6732.00
  16   none M100                12:22:49.001808 +15.47.22.41102 J2000   3        17820    6732.00
  17   none M100                12:22:49.001842 +15.48.06.88856 J2000   3        17820    6732.00
  18   none M100                12:22:49.001876 +15.48.51.36610 J2000   3        17820    6732.00
  19   none M100                12:22:49.001911 +15.49.35.84364 J2000   3        17820    6732.00
  20   none M100                12:22:49.001945 +15.50.20.32118 J2000   3        17820    6732.00
  21   none M100                12:22:59.677959 +15.47.22.40931 J2000   3        17820    6732.00
  22   none M100                12:22:59.677993 +15.48.06.88685 J2000   3        17820    6732.00
  23   none M100                12:22:59.678027 +15.48.51.36439 J2000   3        17820    6732.00
  24   none M100                12:22:59.678061 +15.49.35.84193 J2000   3        17820    6732.00
  25   none M100                12:22:59.678095 +15.50.20.31947 J2000   3        17820    6732.00
  26   none M100                12:22:57.008938 +15.47.44.64850 J2000   3        17820    6732.00
  27   none M100                12:22:57.008973 +15.48.29.12604 J2000   3        17820    6732.00
Spectral Windows:  (24 unique spectral windows and 1 unique polarization setups)
  SpwID  Name                           #Chans   Frame   Ch1(MHz)  ChanWid(kHz)  TotBW(kHz) BBC Num  Corrs  
  0      ALMA_RB_03#BB_1#SW-01#FULL_RES    124   TOPO   91955.512    -15625.000   1937500.0       1  XX  YY
  1      ALMA_RB_03#BB_1#SW-01#CH_AVG        1   TOPO   90986.762   1937500.000   1937500.0       1  XX  YY
  2      ALMA_RB_03#BB_2#SW-01#FULL_RES    124   TOPO   93893.012    -15625.000   1937500.0       2  XX  YY
  3      ALMA_RB_03#BB_2#SW-01#CH_AVG        1   TOPO   92924.262   1937500.000   1937500.0       2  XX  YY
  4      ALMA_RB_03#BB_3#SW-01#FULL_RES    124   TOPO  102033.637     15625.000   1937500.0       3  XX  YY
  5      ALMA_RB_03#BB_3#SW-01#CH_AVG        1   TOPO  102986.762   1937500.000   1937500.0       3  XX  YY
  6      ALMA_RB_03#BB_4#SW-01#FULL_RES    124   TOPO  104033.637     15625.000   1937500.0       4  XX  YY
  7      ALMA_RB_03#BB_4#SW-01#CH_AVG        1   TOPO  104986.762   1937500.000   1937500.0       4  XX  YY
  8      ALMA_RB_03#BB_1#SW-01#FULL_RES    128   TOPO  101942.187    -15625.000   2000000.0       1  XX  YY
  9      ALMA_RB_03#BB_1#SW-01#CH_AVG        1   TOPO  100926.562   1781250.000   1781250.0       1  XX  YY
  10     ALMA_RB_03#BB_2#SW-01#FULL_RES    128   TOPO  103757.337    -15625.000   2000000.0       2  XX  YY
  11     ALMA_RB_03#BB_2#SW-01#CH_AVG        1   TOPO  102741.712   1781250.000   1781250.0       2  XX  YY
  12     ALMA_RB_03#BB_3#SW-01#FULL_RES    128   TOPO  111814.962     15625.000   2000000.0       3  XX  YY
  13     ALMA_RB_03#BB_3#SW-01#CH_AVG        1   TOPO  112783.712   1781250.000   1781250.0       3  XX  YY
  14     ALMA_RB_03#BB_4#SW-01#FULL_RES    128   TOPO  113689.962     15625.000   2000000.0       4  XX  YY
  15     ALMA_RB_03#BB_4#SW-01#CH_AVG        1   TOPO  114658.712   1781250.000   1781250.0       4  XX  YY
  16     ALMA_RB_03#BB_1#SW-01#FULL_RES   4080   TOPO  101945.850      -488.281   1992187.5       1  XX  YY
  17     ALMA_RB_03#BB_1#SW-01#CH_AVG        1   TOPO  100949.756   1992187.500   1992187.5       1  XX  YY
  18     ALMA_RB_03#BB_2#SW-01#FULL_RES   4080   TOPO  103761.000      -488.281   1992187.5       2  XX  YY
  19     ALMA_RB_03#BB_2#SW-01#CH_AVG        1   TOPO  102764.906   1992187.500   1992187.5       2  XX  YY
  20     ALMA_RB_03#BB_3#SW-01#FULL_RES   4080   TOPO  111811.300       488.281   1992187.5       3  XX  YY
  21     ALMA_RB_03#BB_3#SW-01#CH_AVG        1   TOPO  112806.906   1992187.500   1992187.5       3  XX  YY
  22     ALMA_RB_03#BB_4#SW-01#FULL_RES   4080   TOPO  113686.300       488.281   1992187.5       4  XX  YY
  23     ALMA_RB_03#BB_4#SW-01#CH_AVG        1   TOPO  114681.906   1992187.500   1992187.5       4  XX  YY


Sources: 80
  ID   Name                SpwId RestFreq(MHz)  SysVel(km/s) 
  0    J1229+0203          0     -              -            
  0    J1229+0203          1     -              -            
  0    J1229+0203          2     -              -            
  0    J1229+0203          3     -              -            
  0    J1229+0203          4     -              -            
  0    J1229+0203          5     -              -            
  0    J1229+0203          6     -              -            
  0    J1229+0203          7     -              -            
  0    J1229+0203          8     -              -            
  0    J1229+0203          9     -              -            
  0    J1229+0203          10    -              -            
  0    J1229+0203          11    -              -            
  0    J1229+0203          12    -              -            
  0    J1229+0203          13    -              -            
  0    J1229+0203          14    -              -            
  0    J1229+0203          15    -              -            
  0    J1229+0203          16    100950         0            
  0    J1229+0203          17    100950         0            
  0    J1229+0203          18    102794.1       0            
  0    J1229+0203          19    102794.1       0            
  0    J1229+0203          20    112794.1       0            
  0    J1229+0203          21    112794.1       0            
  0    J1229+0203          22    114669.1       0            
  0    J1229+0203          23    114669.1       0            
  1    J1445-1629          0     -              -            
  1    J1445-1629          1     -              -            
  1    J1445-1629          2     -              -            
  1    J1445-1629          3     -              -            
  1    J1445-1629          4     -              -            
  1    J1445-1629          5     -              -            
  1    J1445-1629          6     -              -            
  1    J1445-1629          7     -              -            
  1    Titan               8     -              -            
  1    Titan               9     -              -            
  1    Titan               10    -              -            
  1    Titan               11    -              -            
  1    Titan               12    -              -            
  1    Titan               13    -              -            
  1    Titan               14    -              -            
  1    Titan               15    -              -            
  1    Titan               16    100950         0            
  1    Titan               17    100950         0            
  1    Titan               18    102794.1       0            
  1    Titan               19    102794.1       0            
  1    Titan               20    112794.1       0            
  1    Titan               21    112794.1       0            
  1    Titan               22    114669.1       0            
  1    Titan               23    114669.1       0            
  2    J1215+1654          0     -              -            
  2    J1215+1654          1     -              -            
  2    J1215+1654          2     -              -            
  2    J1215+1654          3     -              -            
  2    J1215+1654          4     -              -            
  2    J1215+1654          5     -              -            
  2    J1215+1654          6     -              -            
  2    J1215+1654          7     -              -            
  2    J1215+1654          16    100950         0            
  2    J1215+1654          17    100950         0            
  2    J1215+1654          18    102794.1       0            
  2    J1215+1654          19    102794.1       0            
  2    J1215+1654          20    112794.1       0            
  2    J1215+1654          21    112794.1       0            
  2    J1215+1654          22    114669.1       0            
  2    J1215+1654          23    114669.1       0            
  2    M100                8     -              -            
  2    M100                9     -              -            
  2    M100                10    -              -            
  2    M100                11    -              -            
  2    M100                12    -              -            
  2    M100                13    -              -            
  2    M100                14    -              -            
  2    M100                15    -              -            
  3    M100                16    100950         0            
  3    M100                17    100950         0            
  3    M100                18    102794.1       0            
  3    M100                19    102794.1       0            
  3    M100                20    112794.1       0            
  3    M100                21    112794.1       0            
  3    M100                22    114669.1       0            
  3    M100                23    114669.1       0            


Antennas: 9:
  ID   Name  Station   Diam.    Long.         Lat.                Offset from array center (m)                ITRF Geocentric coordinates (m)        
                                                                     East         North     Elevation               x               y               z
  0    CM01  N602      7.0  m   -067.45.17.4  -22.53.22.3          8.8026     -527.8556       22.1988  2225080.352214 -5440132.953723 -2481524.785064
  1    CM02  J502      7.0  m   -067.45.17.7  -22.53.23.0          2.1079     -549.4459       22.1451  2225070.958100 -5440127.669506 -2481544.654450
  2    CM03  J503      7.0  m   -067.45.17.4  -22.53.23.2          9.2488     -555.0633       22.1293  2225076.734603 -5440122.930506 -2481549.823442
  3    CM04  N605      7.0  m   -067.45.17.4  -22.53.23.9          9.6883     -575.8319       22.0821  2225074.066737 -5440115.246896 -2481568.938246
  4    CM05  J506      7.0  m   -067.45.17.9  -22.53.23.2         -4.9539     -555.3433       22.1258  2225063.547041 -5440128.203265 -2481550.079981
  5    CM06  N606      7.0  m   -067.45.17.1  -22.53.23.6         19.1996     -566.5626       22.0993  2225084.240791 -5440114.998068 -2481560.405534
  6    CM07  N601      7.0  m   -067.45.17.0  -22.53.22.5         21.0601     -532.5792       22.2041  2225091.003357 -5440126.617491 -2481529.138855
  7    CM09  N603      7.0  m   -067.45.17.7  -22.53.22.3         -0.0719     -527.8532       22.2212  2225072.146648 -5440136.333195 -2481524.791579
  8    CM12  J504      7.0  m   -067.45.17.0  -22.53.23.0         22.2032     -550.2530       22.1451  2225089.438350 -5440119.771735 -2481545.398029

This output shows that three sources were observed in each data set: 3c279, Titan, and the M100.

  • The M100 are our science target. Note that the source corresponds to a number of individual fields (see the Field ID column). These are the individual mosaic pointings. There are 23 for M100 Mosaic.
  • Titan is observed once and will be used to set the absolute flux scale of the data.
  • 3c279 plays two roles: it will serve as our bandpass calibrator, to characterize the frequency response of the antennas, and because it is fairly close on the sky to the M100, it will serve as our secondary calibrator (also referred to as the "phase calibrator" or "gain calibrator"), to track changes in the phase and amplitude response of the telescopes over time. Observations of 3c279 are interleaved with observations of the M100.

The output also shows that the data contain many spectral windows. Using the labeling scheme in the listobs above these are:

  • spw 0 targets ~185 GHz and holds water vapor radiometer data
  • spw 1 and spw 3 hold our science data. These are "Frequency Domain Mode" (FDM) data with small (0.49 MHz) channel width and wide (1.875 GHz) total bandwidth. As a result these have a lot of channels (3840). spw 1 holds the lower sideband (LSB) data and includes the CO(1-0) line. We will focus on these data. For the CO(1-0) line the channel width corresponds to 0.426 km/s and the bandwidth of spw 1 to 1634 km/s.
  • spw 2 and spw 4 hold frequency-averaged versions of spw 1 and 3 ("Channel 0" for those familiar with AIPS). These are used for some quick automated inspection. We will not use them here but we will carry out an equivalent inspection using spw 1.
  • spw 5 and spw 7 hold lower a resolution processing ("Time Domain Mode", TDM) of the data from the same part of the spectrum (baseband) as spws 1 and 3. These data have only 128 channels across 2 GHz bandwidth and so have a much coarser channel spacing than the FDM data. These were used to generate the calibration tables that we include in the tarball but will not otherwise appear in this guide.

The final column of the listobs output in the logger (not shown above) gives the scan intent. Later we will use this information to flag the pointing scans and the hot and ambient load calibration scans.

We'll now have a look at the configuration of the antennas used to take the data using the task plotants (<xr id="uid___A002_X5e971a_X124.plotants.png"/>).

<figure id="uid___A002_X5e971a_X124.plotants.png">

Position of antennas in dataset uid___A002_X5e971a_X124 obtained using task plotants

</figure>

# In CASA
basename=['uid___A002_X5e971a_X124','uid___A002_X5e971a_X2e7','uid___A002_X5e9ff1_X3f3','uid___A002_X5e9ff1_X5b3', 'uid___A002_X60b415_X44','uid___A002_X62f759_X4eb']

for asdm in basename:
    print "Antenna configuration for : "+asdm
    plotants(vis=asdm+'.ms', figfile=asdm+'.plotants.png')
    clearstat()
    dummy_string = raw_input("Hit <Enter> to see the antenna configuration for the next data set.")

This will loop through all 6 data sets, show you the antenna position for each, and save that as a file named, e.g., "uid___A002_X5e971a_X124.plotants.png" for the first data set. The "raw_input" command asks CASA to wait for your input before proceeding. If you would prefer to just browse the .png files after the fact you can remove this. Notice that the antenna setup changes, but only slightly, over the course of the 6 data sets.


  1. In CASA

basename=['uid___A002_X5e971a_X124','uid___A002_X5e971a_X2e7','uid___A002_X5e9ff1_X3f3','uid___A002_X5e9ff1_X5b3', 'uid___A002_X60b415_X44','uid___A002_X62f759_X4eb']

for asdm in basename_all:

   print "Antenna configuration for : "+asdm
   plotants(vis=asdm+'.ms', figfile=asdm+'.plotants.png')
   clearstat()
   dummy_string = raw_input("Hit <Enter> to see the antenna configuration for the next data set.")

</source>

This will loop through all 6 data sets, show you the antenna position for each, and save that as a file named, e.g., "uid___A002_X5e971a_X124.plotants.png" for the first data set. The "raw_input" command asks CASA to wait for your input before proceeding. If you would prefer to just browse the .png files after the fact you can remove this. Notice that the antenna setup changes, but only slightly, over the course of the 6 data sets.

How to Deal With 6 Measurement Sets

# In CASA
basename=['uid___A002_X5e971a_X124','uid___A002_X5e971a_X2e7','uid___A002_X5e9ff1_X3f3','uid___A002_X5e9ff1_X5b3', 'uid___A002_X60b415_X44','uid___A002_X62f759_X4eb']

for asdm in basename_all:
    print asdm

You only need to define your list of MS files once per CASA session. Then "basename" will be a variable in the casapy shell. You can check if it exists by typing "print basename". In the interests of allowing you to easily exit and restart CASA and pick this guide up at any point we will redefine "basename" in each section of the guide. Feel free to skip this step if you've already defined it in your session.

This page will step you through the reduction of the M100 Band3 SV data set using these 'for' loops. We will not be able to show every diagnostic plot but we give an example of each and the syntax to generate the rest. Also please be aware that even on a very fast machine this whole process can take a while, we are simply dealing with a lot of data.

A Priori Flagging

Even before we look in detail, we know that there are some data that we wish to exclude. We will start by flagging "shadowed" data where one antenna blocks the line of sight of another. We will also flag scans that were used to carry out pointing and atmospheric calibration, identified by their scan intent. Finally, we'll flag the autocorrelation data (the correlation of the signal from an antenna with itself) as we are only interested in cross-correlation data to make an interferometric image.

Start by defining our list of MS files:

# In CASA
basename=['uid___A002_X5e971a_X124','uid___A002_X5e971a_X2e7','uid___A002_X5e9ff1_X3f3','uid___A002_X5e9ff1_X5b3', 'uid___A002_X60b415_X44','uid___A002_X62f759_X4eb']

You may want to reset the flagging if you have tried this step before and are starting over though this is not necessary on your first time through. Do so using flagdata:

# In CASA
for asdm in basename:
    print "Resetting flags for "+asdm
    flagdata(vis=asdm+'.ms', mode='unflag', flagbackup=F)

Then flag shadowed data using the command flagdata:

# In CASA
for asdm in basename:
    print "Flagging shadowed data for "+asdm
    flagdata(vis=asdm+'.ms',mode = 'shadow', flagbackup = F)

In the flagdata task we choose:

  • vis = asdm+'.ms' : each measurement set
  • mode = 'shadow': flag shadowed data
  • flagbackup = F: Do not automatically back up the flag files. We will save all of the a priori flags together using flagmanager at the end of this subsection and save some space and time.

The relevant calibration information has already been extracted from the pointing and atmospheric scans and we will not need them below. Now flag the pointing scans using flagdata in 'manualflag' mode and selecting on 'intent':

# In CASA
for asdm in basename:
    print "Flagging calibration scans for "+asdm
    flagdata(vis=asdm+'.ms', mode='manual', intent='*POINTING*,*SIDEBAND_RATIO*,*ATMOSPHERE*', flagbackup = F)

Note that because the atmospheric calibration scans contain only TDM spectral windows, they will be removed automatically when we separate out the FDM data below.

Now flag the autocorrelation data:

# In CASA
for asdm in basename:
    print "Flagging autocorrelation data for "+asdm
    flagdata(vis=asdm+'.ms',autocorr=True,flagbackup=F)
# In CASA
for asdm in basename:
    print "Flagging shadow for "+asdm
    flagmanager(vis = asdm+'.ms', mode = 'restore', versionname = 'shadow')

Finally store the current flags information using flagmanager:

# In CASA
for asdm in basename:
    print "Backing up 'a priori' flags for "+asdm
    flagmanager(vis = asdm+'.ms', mode = 'save', versionname = 'Apriori')
The flagmanager task will also allow you to view the saved flagging versions,
including those created by running flagdata with flagbackup=T.

For example try 

flagmanager(vis='uid___A002_X5e971a_X124.ms', mode='list')

The output in the logger should list the Apriori flagging that we have applied.
It will also indicate versions associated with any flagdata command where you
did not set flagbackup=F. Other tasks, for example applycal, will also create
flag version tables.


Create and Apply Tsys and Antenna Position Calibration Tables

#In CASA
basename=['uid___A002_X5e971a_X124','uid___A002_X5e971a_X2e7','uid___A002_X5e9ff1_X3f3','uid___A002_X5e9ff1_X5b3', 'uid___A002_X60b415_X44','uid___A002_X62f759_X4eb']

Tsys

The Tsys calibration gives a first-order correction for the atmospheric opacity as a function of time and frequency and associates weights with each visibility that persists through imaging.

Use gencal to create the Tsys calibration tables from the spectral windows with CALIBRATE_ATMOSPHERE intents in listobs.

#In CASA
#Removing existing Tsys information
os.system('rm -rf *tdm.tsys')
for asdm in basename_all:
    print "Creating TDM Tsys Table for "+asdm
    gencal(vis=asdm+'.ms',caltable=asdm+'.tdm.tsys',spw='5,7',caltype='tsys')

Later in the applycal stage this TDM Tsys table will be interpolated to the FDM (3840 channels per spw) science spectral windows 1 and 3.

Next we inspect the Tsys tables for the spectral window spw=5 with the task plotcal. We want to check that Tsys data have reasonable values and identify any unexpected features as a function of either time or frequency. To get an idea of sensible Tsys under average atmospheric observations consult the ALMA sensitivity calculator, accessible from http://www.almascience.org (via the "Documents & Tools" link).

We start by plotting the Tsys for all the antennas and polarizations (XX and YY) as a function of time for each. Here and throughout we focus on spw 1, which contains CO(3-2): <figure id="uid___A002_X1ff7b0_X1c8.tsys_vs_time.page1.png">

Tsys vs. time plot for uid_A002_X1ff7b0_Xb (northern mosaic). First 8 antennas. Note the high y-axis values for DV04. The two different colors indicate the two polarizations (XX and YY).

</figure> <figure id="uid___A002_X1ff7b0_X1c8.tsys_vs_time.page2.png">

Tsys vs. time plot for uid_A002_X1ff7b0_Xb (northern mosaic). Remaining antennas.

</figure>

#In CASA
basename=['uid___A002_X5e971a_X124','uid___A002_X5e971a_X2e7','uid___A002_X5e9ff1_X3f3','uid___A002_X5e9ff1_X5b3', 'uid___A002_X60b415_X44','uid___A002_X62f759_X4eb']

<source lang="python">
#In CASA
for name in basename:
    os.system('rm -rf name+'.ms.tsys')
    gencal(vis = name+'.ms',
       caltable=name+'.ms.tsys',
       caltype = 'tsys')

This sequence loops over all of our files and plots Tsys as a function of time for channel 50 in spectral window 5. In the call to plotcal:

  • subplot=421 parameter sets up a 4 x 2 panel grid.
  • iteration tells plotcal to make a separate plot for each antenna.
  • spw '5:50~50' selects spw '5' channel 50-50. This allows us to cleanly separate time variations from frequency variations.

Because 8 panels (2 panels for each antenna - LSB and USB) is not enough to show all antennas on one page, there are two plotcal calls: one for the first 8 antennas (antenna=0~7), and then for the remaining antennas (antenna=8~15). The fontsize needs to be set to a small value or the text overlaps.

The 'raw_input' commands will wait for you to hit Enter before issuing the next plot command. In the example above these are commented out (the leading "#" means that CASA will ignore them). If you would like to interactively cycle through the plots, uncomment them by removing the "#". Otherwise, the figfile parameter directs the output to .png files for later inspection. The easiest way to look at the 20 plots produced here is to simply inspect the .png files using your favorite viewer.

The Tsys values in <xr id="uid___A002_X1ff7b0_X1c8.tsys_vs_time.page1.png"/> and <xr id="uid___A002_X1ff7b0_X1c8.tsys_vs_time.page2.png"/> look reliable, with typical values ~150 K except for some large values of Tsys at ~400 and 500 K for DV04. We will flag the data for that antenna later.

We will also want to look at Tsys as a function of frequency. This will use the analysisutils package mentioned at the beginning of this guide (called by the au. command)

#In CASA
basename_all=["uid___A002_X1ff7b0_Xb","uid___A002_X207fe4_X3a","uid___A002_X207fe4_X3b9",
     "uid___A002_X2181fb_X49","uid___A002_X1ff7b0_X1c8","uid___A002_X207fe4_X1f7",
     "uid___A002_X207fe4_X4d7","uid___A002_X215db8_X18","uid___A002_X215db8_X1d5",
     "uid___A002_X215db8_X392"]

for asdm in basename_all:
  os.system('rm -rf cal_plots/Tsys_plots/'+asdm+'.tdm.tsys*')
  tsysfields=['3c279','Titan','Antennae']
  caltable=asdm+'.tdm.tsys'
  for field in tsysfields:
    au.plotbandpass(caltable=caltable,yaxis='amp',field=field,xaxis='freq',
                showatm=True,overlay='time',
                figfile='cal_plots/Tsys_plots/'+caltable+'.'+field,buildpdf=False,
                interactive=False,chanrange='8~120',subplot=42)

<figure id="Uid___A002_X1ff7b0_Xb.tdm.tsys.3c279.DV02.spw5.CASA3_4.png">

Tsys vs. frequency plot for uid_A002_X1ff7b0_Xb (northern mosaic). First 4 antennas. Note the high y-axis values for DV04 and the mesospheric line near 343.2 GHz.

</figure> <figure id="Uid___A002_X1ff7b0_Xb.tdm.tsys.3c279.DV08.spw5.CASA3_4.png">

Tsys vs. frequency plot for uid_A002_X1ff7b0_Xb (northern mosaic). Next 4 antennas.

</figure> <figure id="Uid___A002_X1ff7b0_Xb.tdm.tsys.3c279.PM01.spw5.CASA3_4.png">

Tsys vs. frequency plot for uid_A002_X1ff7b0_Xb (northern mosaic). Remaining antennas.

</figure>

<figure id="Uid___A002_X215db8_X392.tdm.tsys.3c279.DV11.spw5.CASA3_4.png">

Tsys vs. frequency plot for uid___A002_X215db8_X392. Note the pathological behavior for DV12.

</figure>

Now have a look at the Tsys vs. frequency plots or see <xr id="Uid___A002_X1ff7b0_Xb.tdm.tsys.3c279.DV02.spw5.CASA3_4.png"/>, <xr id="Uid___A002_X1ff7b0_Xb.tdm.tsys.3c279.DV08.spw5.CASA3_4.png"/>, and <xr id="Uid___A002_X1ff7b0_Xb.tdm.tsys.3c279.PM01.spw5.CASA3_4.png"/> for examples on the first data set. You can see the effect of a close pair of atmospheric ozone absorption lines at about 343.2 GHz that makes Tsys larger near that frequency in all antennas. Applying the Tsys calibration tables will minimize the contribution of these atmospheric lines. Again DV04 stands out with its very high Tsys. Although not present in the first data sets, Antenna DV12 exhibits periodic spikes in Tsys vs. frequency for one polarization (see <xr id="Uid___A002_X215db8_X392.tdm.tsys.3c279.DV11.spw5.CASA3_4.png"/> for an example from a later data set). It may or may not be possible to calibrate that behavior out. We will make a note to look carefully at DV12 further on in the calibration process.

WVR

The WVR calibration uses observations of the wings of the 183 GHz atmospheric water line to correct for phase variations as a function of time. As noted in the tsys section, this run of gencal will append to existing WVR produced tables. To avoid this, preexisting wvrgcal data is removed.

#In CASA
#Removing existing WVR information
os.system('rm -rf *.wvrgcal')
for asdm in basename_all:
    wvrgcal(vis=asdm+'.ms',caltable=asdm+'.wvrgcal',toffset=-1)

Antenna Positions

The antenna position table reflects refinements in the measured positions of the antennas from those stored in the data. gencal will now be used put antenna position data into each observation. Again, gencal will merely append to existing antenna position data, ruining any subsequent results. We start by removing any existing antenna position refinements, followed by defining the antenna names, then their refinements (both as arrays), finally running gencal to create the information CASA can refer to for antenna positions.

#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X1ff7b0_Xb.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:21]+'.antpos')
antenna='DV02,DV04,DV06,DV07,DV08,DV09,DV10,DV11,PM01,PM02,PM03'
parameter = [
 0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00027, 0.00033, 0.00022, #DV06-T704
 0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00056, 0.00028, 0.00026, #DV10-A009
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00034, 0.00092, 0.00027, #PM02-A017 Before July 1
-0.00007, 0.00034, -0.00004] #PM03-J504 
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
       antenna=antenna,parameter=parameter)

#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X207fe4_X3a.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:22]+'.antpos')
antenna='DV02,DV04,DV05,DV06,DV07,DV08,DV09,DV10,DV11,DV12,PM01,PM03'
parameter = [
 0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00019,-0.00003, 0.00035, #DV05-A067
-0.00027, 0.00033, 0.00022, #DV06-T704
 0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00056, 0.00028, 0.00026, #DV10-A009
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00018, 0.00010,-0.00014, #DV12-A011
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00007, 0.00034, -0.00004] #PM03-J504 
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
       antenna=antenna,parameter=parameter)

#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X207fe4_X3b9.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:23]+'.antpos')
antenna='DV02,DV04,DV05,DV06,DV07,DV08,DV09,DV10,DV11,DV12,PM01,PM03'
parameter = [
 0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00019,-0.00003, 0.00035, #DV05-A067
-0.00027, 0.00033, 0.00022, #DV06-T704
 0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00056, 0.00028, 0.00026, #DV10-A009
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00018, 0.00010,-0.00014, #DV12-A011
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00007, 0.00034, -0.00004] #PM03-J504 
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
       antenna=antenna,parameter=parameter)
#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X2181fb_X49.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:22]+'.antpos')
antenna='DV01,DV02,DV04,DV05,DV06,DV07,DV08,DV09,DV10,DV11,DV12,DV13,PM01,PM03'
parameter = [
-0.00004, 0.00026, 0.00019, #DV01-A137
 0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00019,-0.00003, 0.00035, #DV05-A067
-0.00027, 0.00033, 0.00022, #DV06-T704
 0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00056, 0.00028, 0.00026, #DV10-A009
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00018, 0.00010,-0.00014, #DV12-A011
 0.00009, 0.00033, 0.00023, #DV13-A075
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00007, 0.00034, -0.00004] #PM03-J504 
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
       antenna=antenna,parameter=parameter)

#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X1ff7b0_X1c8.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:23]+'.antpos')
antenna='DV02,DV04,DV06,DV07,DV08,DV09,DV10,DV11,PM01,PM02,PM03'
parameter = [
 0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00027, 0.00033, 0.00022, #DV06-T704
 0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00056, 0.00028, 0.00026, #DV10-A009
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00034, 0.00092, 0.00027, #PM02-A017 Before July 1
-0.00007, 0.00034, -0.00004] #PM03-J504 
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
       antenna=antenna,parameter=parameter)

#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X207fe4_X1f7.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:23]+'.antpos')
antenna='DV02,DV04,DV05,DV06,DV07,DV08,DV09,DV10,DV11,DV12,PM01,PM03'
parameter = [
 0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00019,-0.00003, 0.00035, #DV05-A067
-0.00027, 0.00033, 0.00022, #DV06-T704
 0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00056, 0.00028, 0.00026, #DV10-A009
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00018, 0.00010,-0.00014, #DV12-A011
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00007, 0.00034, -0.00004] #PM03-J504 
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
       antenna=antenna,parameter=parameter)

#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X207fe4_X4d7.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:23]+'.antpos')
antenna='DV02,DV04,DV05,DV06,DV07,DV08,DV09,DV11,DV12,PM01,PM03'
parameter = [
 0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00019,-0.00003, 0.00035, #DV05-A067
-0.00027, 0.00033, 0.00022, #DV06-T704
 0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00018, 0.00010,-0.00014, #DV12-A011
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00007, 0.00034, -0.00004] #PM03-J504 
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
       antenna=antenna,parameter=parameter)


#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X215db8_X18.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:22]+'.antpos')
antenna='DV02,DV04,DV05,DV06,DV07,DV08,DV09,DV10,DV11,DV12,DV13,PM01,PM03'
parameter = [
 0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00019,-0.00003, 0.00035, #DV05-A067
-0.00027, 0.00033, 0.00022, #DV06-T704
 0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00056, 0.00028, 0.00026, #DV10-A009
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00018, 0.00010,-0.00014, #DV12-A011
 0.00009, 0.00033, 0.00023, #DV13-A075
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00007, 0.00034, -0.00004] #PM03-J504 
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
       antenna=antenna,parameter=parameter)


#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X215db8_X1d5.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:23]+'.antpos')
antenna='DV02,DV04,DV05,DV06,DV07,DV08,DV09,DV10,DV11,DV12,DV13,PM01,PM03'
parameter = [
 0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00019,-0.00003, 0.00035, #DV05-A067
-0.00027, 0.00033, 0.00022, #DV06-T704
 0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00056, 0.00028, 0.00026, #DV10-A009
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00018, 0.00010,-0.00014, #DV12-A011
 0.00009, 0.00033, 0.00023, #DV13-A075
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00007, 0.00034, -0.00004] #PM03-J504 
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
       antenna=antenna,parameter=parameter)

#In CASA
#The measurement set we are refining the antenna positions for
data='uid___A002_X215db8_X392.ms'
#Removing existing antenna refinements
os.system('rm -rf '+data[0:23]+'.antpos')
antenna='DV02,DV04,DV05,DV06,DV07,DV08,DV09,DV10,DV11,DV12,DV13,PM01,PM03'
parameter = [
 0.00000, 0.00000, 0.00000, #DV02-A015
-0.00004, 0.00059, 0.00024, #DV04-J505
-0.00019,-0.00003, 0.00035, #DV05-A067
-0.00027, 0.00033, 0.00022, #DV06-T704
 0.00006, 0.00057, 0.00032, #DV07-A004
-0.00027, 0.00025,-0.00003, #DV08-A072
-0.00037, 0.00025, 0.00003, #DV09-A008
-0.00056, 0.00028, 0.00026, #DV10-A009
-0.00028, 0.00024, 0.00011, #DV11-A016
-0.00018, 0.00010,-0.00014, #DV12-A011
 0.00009, 0.00033, 0.00023, #DV13-A075
-0.00017, 0.00013, 0.00030, #PM01-T702
-0.00007, 0.00034, -0.00004] #PM03-J504 
gencal(vis=data,caltable='%s.antpos'%(data.split('.')[0]),caltype='antpos',
       antenna=antenna,parameter=parameter)