Monday Jan 11
900 coffee, light breakfast, introductions & logistics [RI]
- updates: casaguides.nrao.edu and one sim example [RI]
- DSRP++ examples library wiki [vanKampen] (begin filling in, Eelco can present to NAASC Tues)
- the guts of simdata — the task interfacing with the tools [RI]
- discussion — improvements to simdata interface and outputs
(1000 regular CASA developer telecon)
- (CASA developers) uses/requirements for simulation as used by CASA developers and pipeline group
1050 uses/requirements for simulation as used by CSV [Corder]
1110 web interface (existing AIPS+parseltongue, concept for CASA) [Heywood]
discussion — write requirements for new web interface
1210 Corder lunch talk
110 logistics for implementing web interface [Halstead & NRAO IT]
215 how Simulator, NewMSSimulator, and Imager calculate visibilities
315 SD1 — update on sdsim, requirements to produce coordinated SD and interferometric ms for e.g. pipeline testing
how pointing corruption and correction work in CASA [Bhatnagar]

Tuesday Jan 12
900 coffee, light breakfast
910 CASA calibration with the Measurement Equation and VisCals
how Simulator instructs VisCals to invent themselves,
- aatm, the WVR methods in particular and how to best simulate WVR measurements
- any required changes to Calibrator and VisCals to tie those in with the others? [+Moellenbrock]
- ASDM structure, issues regarding simulating perfect visibilities and their corrupting cal in an ASDM
1210 Nikolic lunch talk
115 items of interest for general NAASC staff (there is a regular NAASC internal meeting at this time). In particular,
are the items on the library wiki/list appropriate, and who in the room wants to sign up for one?
130 discussion: what will (should) the sum of prep tools look to the user?
simdata + OT + etime calculator + helpdesk + web interface
245 incorporation of current and current and future simulations in the archive [vanKampen, Lacy]
300 implement the above ©

simdata

sm.openfromms(noisyms); sm.setnoise()
sm.corrupt()

call clean task

la.open(modelimage4d);

Sproject.SmodelimageS.flat0
la.moments(mements=[-1])

calculate moment zero input image

calculate moment zero output image Sproject.Smodelimages.flat
regrid flat input to flat output shape, add clean components to regridded flat input Sproject.clean.flat
ia.convolve2d() Sproject.convolved.im
ia.imagecalc() Sproject.diff.im, Sproject.fidelity.im

simutil.statim(model, clean, diff, etc)

calculate stats, plot using matplotlib

Simulator::observe(source,spw,startTime,stopTime)
NewMSSimulator::observe(source,spw,startTime,stopTime)
get antXYZ from antenna subtable, feed, spw, source info from their subtables
add nintegrations rows and extend hypercube and subtables

NewMSSimulator::calcAntUVW()

Put UVW values in new rows If autoCorrelationWt_p > 0 anslo add AC rows

flag based on elevation and shadowing

Pointing

add exact phase center to Pointing subtable 5
errors:

Simulator:: predict(modellmage, complList)

Simulator:: createSkyEquation(modellmage, complList)

sm_p = new CleanlmageSkyModel(); sm_p->add() sets pointers and inits vars
SkyEquation:: predict()

SkyEquation:: predictComponents()
SkyEquation:: get(VisBuffer& result, ComponentList& complList)
SkyEquation:: applySkylones(Skycomponent& corruptedComponent, vb, row)
e.g. BeamSkylones:: apply(SkyComponent&) Pointing
PBMath.applyPB() o
PBMath1D.apply(SkyComponent&) compFlux(pol) *= taper;
SimpleComponentFTMachine:: get(vb, component);
rotateUVW(vb.uvw() ...)
modelData = component.visibility()
SkyComponent:: visibility()
SkyCompRep:: visibility()

e.g. GaussianShape::visibility(uvw, itsFT(-uvw(0)*wavenumber, uvw(1)*wavenumber)

copy visibilities to desired column (Model or Data)

Simulator:: predict(modellmage, complList)

Simulator:: createSkyEquation(modellmage, complList)

sm_p = new CleanlmageSkyModel(); sm_p->add() sets pointers and inits vars

SkyEquation:: predict()
SkyEquation:: predictComponents()

copy visibilities to desired column of VB (Model or Data)

SkyEquation:: initalizeGet()
SkyEquation:: applySkyJones(vb, row, Imagelnterface&

e.g. BeamSkylones:: apply()

PBMath.applyPB()

SkyEquation:: get(VisBuffer& result, Int model)
e.g. GridFT::get(
rotateUVW(vb.uvw ...; refocus(vb.uvw
FTMachine::getIinterpolateArrays(

fgridft.f . dgrid()
copy visibilities to desired column of VB (Model or Data)

copy visibilities from VB back to VI

Apply
atmosphere
Tlones here?

Pointing
errors

Stolen from George Moellenbrock’s Synthesis Summer School lecture

From Idealistic to Realistic

Formally, we wish to use our interferometer to obtain the visibility
function, which we intend to invert to obtain an image of the sky:

V(u,v)= f](l, m e gl dm

sky

In practice, we correlate (multiply & average) the electric field (voltage)
samples, x; & x, received at pairs of telescopes (i,j) and processed through
the observing system:

VUObS(uU,v) <xl.(t)-xj.(t)>A =J Vuy,v)

— Averaging duration is set by the expected timescales for variation of the
correlation result (typically 10s or less for the VLA)

J;;is an operator characterizing the net effect of the observing process for

baseline (i,j), which we must calibrate

Sometimes J; corrupts the measurement irrevocably, resulting in data that
must be edited

Stolen from George Moellenbrock’s Synthesis Summer School lecture

Antenna-based Cross Calibration

* Measured visibilities are formed from a product of antenna-based
signals. Can we take advantage of this fact?

* The net signal delivered by antenna j, x,(t), is a combination of the
desired signal, s,(t,/,m), corrupted by a factor J(t,/,m) and integrated
over the sky, and diluted by noise, n(t):

x,(t) = le. (¢,1,m)s.(t,1,m) dldm+ n.(t)

sky

- S;(t) + ni(t)
* J(t,m)is the product of a series of effects encountered by the
incoming signal
e J(t[m)is an antenna-based complex number
Usually, [n, [>> [s.]

Stolen from George Moellenbrock’s Synthesis Summer School lecture

Correlation of Realistic Signals - |

 The correlation of two realistic signals from different antennas:
<xi . x;>m - <(S’, T) (§; TR,)>At
= <Sl, S;*> +<S: nj>+<nl S;*>+<I’ll nj>

* Noise signal doesn’t correlate—even if |n;[>> [s],
the correlation process isolates desired signals:

-(5:57),
= <le.Sl.dl'dm'-fJ;S;dldm>
At

sky sky
* Inintegral, only s(t,,m), from the same directions
correlate (i.e., when I=I, m=m’), so order of
integration and signal product can be reversed:

= le.J;SiS;dldm

sky Af

Stolen from George Moellenbrock’s Synthesis Summer School lecture

Correlation of Realistic Signals - I

* Thes; &s; differ only by the relative arrival phase of signals from different parts of
the sky, yielding the Fourier phase term (to a good approximation):

V, = [I35 om0 i
sky At

* On the timescale of the averaging, the only meaningful average is of the squared
signal itself (direction-dependent), which is just the image of the source:

- le.J; <32 (t,1, m)>At)

sky

= [.51@m)e >

sky

e Ifall J=1, we of course recover the ideal expression:

= [1(.m)e™) ddm

sky

Stolen from George Moellenbrock’s Synthesis Summer School lecture

The Scalar Measurement Equation
yo = fJJ (0, m Y

* First, isolate non-dlrectlon-dependent effects, and factor them from the
integral:

= (e)f(JS"yJS"y Y@l i

* Next, we recognize that over smaII fields of view, it is possible to assume Jkv=1,
and we have a relationship between ideal and observed Visibilities:

=G) 1my) ddm

sky

e Standard cMi‘ﬁ’FaEc(ﬂd‘Fﬂ%%t)& Sting gkr,;fyifr’é’&uces to solving this last equation
for the J,

Stolen from George Moellenbrock’s Synthesis Summer School lecture

Solving for the J.
IZJZS@ _(Ji‘];f)= 0
V'J'

obs 2
 ..and define chi-squared: 2 i .
q X = E frue (JIJJ* Wij
o

e We can write:

L, Vij

e ...and minimize chi-squared w.r.t. each Ji, yielding (iteration):

ox _
) (e /z(J (%-0)
i i

* ..which we recognize as a weighted average of J, itself:

J,.=;(J)/

Stolen from George Moellenbrock’s Synthesis Summer School lecture

Full-Polarization Formalism: Signal Domain
* Substitute:

N%
Il
—
ta @
< S
~——

~ p=p q—=>p
9=V J)
Jrea o jaa

 The Jones matrix thus corrupts the vector wavefront
signal as follows:

S S (sky integral omitted)

Jp_>p q_>p Sp
(Jp PP 4 Ji7Pg)

JP ‘IS _I_JCI_’C] q

—

Calibration and Corruption

* J,contains many components:
* F=lionospheric effects
* T =tropospheric effects
* P =parallactic angle
* X =linear polarization position angle
* E =antenna voltage pattern _ N
* D =polarization leakage _
* G = electronic gain Ji — KiBi GiDiE X
* B =bandpass response

o
i
T

* K =geometric compensation
* M, A = baseline-based corrections

* Order of terms follows signal path (right to left)

* In CASA, each term is a VisCal, |and their application to visibilities is
handled by the|VisEquation |

* For simulation, we must create|VisCals of the the desired types,
calculate their terms a priori and store that information in their|CalSets

sm.openfromms(noisyms); sm.setnoise()
Simulator::setnoise(pwyv,altitude,etc)
Simulator:: create_corrupt(simpar.type="ANoise”)
svc = createSolvableVisCal(upType,*vs_p)
SolvableVisCal::setSimulate()
SolvableVisCal:: sizeUpSim(vs, nChunkPerSim, solTimes)

ANoise:: createCorruptor()

SolvableVisCal:: createCorruptor() get nSpw etc from VI.msColumns
ANoiseCorruptor:: initialize() new MLCG, new Normal Arrange info
more naturally
pass info down to corruptor like start/stop times, etc T

corruptor and

Iterate through VI; for each chunk, determine correct time slot in corruptor;)
parent VisCal ?

set antenna, focusChan, etc in corruptor;
solveCPar()(gpos) = corruptor_p->simPar(vi,type(),ipar);

ANoiseCorruptor:: simPar() return Complex((*nDist_p)()*amp(),(*nDist_p)()*amp());
keep each gain, weight, etc in CalSet T
SolvableVisCal:: store() write caltable if desired weights are
correct

add this SVC to pointer block vc_p

Simulator:: create_corrupt(simpar.type=“MMueller”) Scale noise
with a Jones

-> AtmosCorruptor

sm.corrupt()
Simulator:: corrupt()
VisEquation:: setApply(vc_p) puts VCs in order
VisEquation:: setPivot() correct Model with some VCs, corrupt Data with the rest
Iterate VI
VisEquation:: collapseForSim(vb)
Model = Data

VisCal:: corrupt()

e.g8. VisMueller:: applyCal(ModelCube)

Data=0
VisCal:: correct()

e.g. VisMueller:: applyCal(visCube)

vb.visCube()+=vb.modelVisCube();

Vislter:: setWeightMat(vb) check

copy from VB back to VI

